import os from typing import Dict, List, Any import uuid from copy import deepcopy from langchain.embeddings import OpenAIEmbeddings from chromadb import Client as ChromaClient from aiflows.base_flows import AtomicFlow import hydra class ChromaDBFlow(AtomicFlow): """ A flow that uses the ChromaDB model to write and read memories stored in a database *Configuration Parameters*: - `name` (str): The name of the flow. Default: "chroma_db" - `description` (str): A description of the flow. This description is used to generate the help message of the flow. Default: "ChromaDB is a document store that uses vector embeddings to store and retrieve documents." - `backend` (Dict[str, Any]): The configuration of the backend which is used to fetch api keys. Default: LiteLLMBackend with the default parameters of LiteLLMBackend (see aiflows.backends.LiteLLMBackend). Except for the following parameter whose default value is overwritten: - `api_infos` (List[Dict[str, Any]]): The list of api infos. Default: No default value, this parameter is required. - `model_name` (str): The name of the model. Default: "". In the current implementation, this parameter is not used. - `n_results` (int): The number of results to retrieve when reading from the database. Default: 5 - Other parameters are inherited from the default configuration of AtomicFlow (see AtomicFlow) *Input Interface*: - `operation` (str): The operation to perform. It can be "write" or "read". - `content` (str or List[str]): The content to write or read. If operation is "write", it must be a string or a list of strings. If operation is "read", it must be a string. *Output Interface*: - `retrieved` (str or List[str]): The retrieved content. If operation is "write", it is an empty string. If operation is "read", it is a string or a list of strings. :param backend: The backend of the flow (used to retrieve the API key) :type backend: LiteLLMBackend :param \**kwargs: Additional arguments to pass to the flow. """ def __init__(self, backend,**kwargs): super().__init__(**kwargs) self.client = ChromaClient() self.collection = self.client.get_or_create_collection(name=self.flow_config["name"]) self.backend = backend @classmethod def _set_up_backend(cls, config): """ This instantiates the backend of the flow from a configuration file. :param config: The configuration of the backend. :type config: Dict[str, Any] :return: The backend of the flow. :rtype: Dict[str, LiteLLMBackend] """ kwargs = {} kwargs["backend"] = \ hydra.utils.instantiate(config['backend'], _convert_="partial") return kwargs @classmethod def instantiate_from_config(cls, config): """ This method instantiates the flow from a configuration file :param config: The configuration of the flow. :type config: Dict[str, Any] :return: The instantiated flow. :rtype: ChromaDBFlow """ flow_config = deepcopy(config) kwargs = {"flow_config": flow_config} # ~~~ Set up backend ~~~ kwargs.update(cls._set_up_backend(flow_config)) # ~~~ Instantiate flow ~~~ return cls(**kwargs) def get_input_keys(self) -> List[str]: """ This method returns the input keys of the flow. :return: The input keys of the flow. :rtype: List[str] """ return self.flow_config["input_keys"] def get_output_keys(self) -> List[str]: """ This method returns the output keys of the flow. :return: The output keys of the flow. :rtype: List[str] """ return self.flow_config["output_keys"] def run(self, input_data: Dict[str, Any]) -> Dict[str, Any]: """ This method runs the flow. It runs the ChromaDBFlow. It either writes or reads memories from the database. :param input_data: The input data of the flow. :type input_data: Dict[str, Any] :return: The output data of the flow. :rtype: Dict[str, Any] """ api_information = self.backend.get_key() if api_information.backend_used == "openai": embeddings = OpenAIEmbeddings(openai_api_key=api_information.api_key) else: # ToDo: Add support for Azure embeddings = OpenAIEmbeddings(openai_api_key=os.getenv("OPENAI_API_KEY")) response = {} operation = input_data["operation"] if operation not in ["write", "read"]: raise ValueError(f"Operation '{operation}' not supported") content = input_data["content"] if operation == "read": if not isinstance(content, str): raise ValueError(f"content(query) must be a string during read, got {type(content)}: {content}") if content == "": response["retrieved"] = [[""]] return response query = content query_result = self.collection.query( query_embeddings=embeddings.embed_query(query), n_results=self.flow_config["n_results"] ) response["retrieved"] = [doc for doc in query_result["documents"]] elif operation == "write": if content != "": if not isinstance(content, list): content = [content] documents = content self.collection.add( ids=[str(uuid.uuid4()) for _ in range(len(documents))], embeddings=embeddings.embed_documents(documents), documents=documents ) response["retrieved"] = "" return response