"""A simple script to run a Flow that can be used for development and debugging.""" import os import hydra import aiflows from aiflows.flow_launchers import FlowLauncher from aiflows.utils.general_helpers import read_yaml_file from aiflows import logging from aiflows.flow_cache import CACHING_PARAMETERS, clear_cache CACHING_PARAMETERS.do_caching = False # Set to True to enable caching # clear_cache() # Uncomment this line to clear the cache logging.set_verbosity_debug() dependencies = [ {"url": "aiflows/LCToolFlowModule", "revision": os.getcwd()}, ] from aiflows import flow_verse flow_verse.sync_dependencies(dependencies) if __name__ == "__main__": root_dir = "." cfg_path = os.path.join(root_dir, "demo.yaml") cfg = read_yaml_file(cfg_path) flow_with_interfaces = { "flow": hydra.utils.instantiate(cfg['flow'], _recursive_=False, _convert_="partial"), "input_interface": ( None if getattr(cfg, "input_interface", None) is None else hydra.utils.instantiate(cfg['input_interface'], _recursive_=False) ), "output_interface": ( None if getattr(cfg, "output_interface", None) is None else hydra.utils.instantiate(cfg['output_interface'], _recursive_=False) ), } # ~~~ Get the data ~~~ # This can be a list of samples data = {"id": 0, "query": "Michael Jordan age"} # Add your data here # ~~~ Run inference ~~~ path_to_output_file = None # path_to_output_file = "output.jsonl" # Uncomment this line to save the output to disk _, outputs = FlowLauncher.launch( flow_with_interfaces=flow_with_interfaces, data=data, path_to_output_file=path_to_output_file, ) # ~~~ Print the output ~~~ flow_output_data = outputs[0] print(flow_output_data)