Adds flax port for IndicTrans2
Browse files- config.json +2 -1
- flax_model.msgpack +3 -0
- modeling_flax_indictrans.py +1373 -0
config.json
CHANGED
@@ -7,7 +7,8 @@
|
|
7 |
],
|
8 |
"auto_map": {
|
9 |
"AutoConfig": "configuration_indictrans.IndicTransConfig",
|
10 |
-
"AutoModelForSeq2SeqLM": "modeling_indictrans.IndicTransForConditionalGeneration"
|
|
|
11 |
},
|
12 |
"attention_dropout": 0.0,
|
13 |
"bos_token_id": 0,
|
|
|
7 |
],
|
8 |
"auto_map": {
|
9 |
"AutoConfig": "configuration_indictrans.IndicTransConfig",
|
10 |
+
"AutoModelForSeq2SeqLM": "modeling_indictrans.IndicTransForConditionalGeneration",
|
11 |
+
"FlaxAutoModelForSeq2SeqLM": "modeling_flax_indictrans.FlaxIndicTransForConditionalGeneration"
|
12 |
},
|
13 |
"attention_dropout": 0.0,
|
14 |
"bos_token_id": 0,
|
flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d1470cfb17a2881611d9d2dda3e1ab3457914ce16a099d8dc5466fe202e85ad
|
3 |
+
size 847132908
|
modeling_flax_indictrans.py
ADDED
@@ -0,0 +1,1373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The IndicTrans2 Authors and AI4Bharat team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Flax IndicTrans model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import List, Optional, Tuple, Union, Callable
|
20 |
+
from functools import partial
|
21 |
+
|
22 |
+
import flax.linen as nn
|
23 |
+
import jax
|
24 |
+
import jax.numpy as jnp
|
25 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
26 |
+
from flax.linen import combine_masks, make_causal_mask
|
27 |
+
from flax.linen.attention import dot_product_attention_weights
|
28 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
29 |
+
from jax import lax
|
30 |
+
from jax.random import PRNGKey
|
31 |
+
|
32 |
+
from transformers.modeling_flax_outputs import (
|
33 |
+
FlaxBaseModelOutput,
|
34 |
+
FlaxBaseModelOutputWithPastAndCrossAttentions,
|
35 |
+
FlaxCausalLMOutputWithCrossAttentions,
|
36 |
+
FlaxSeq2SeqLMOutput,
|
37 |
+
FlaxSeq2SeqModelOutput,
|
38 |
+
)
|
39 |
+
from transformers.modeling_flax_utils import (
|
40 |
+
ACT2FN,
|
41 |
+
FlaxPreTrainedModel,
|
42 |
+
append_call_sample_docstring,
|
43 |
+
append_replace_return_docstrings,
|
44 |
+
overwrite_call_docstring,
|
45 |
+
)
|
46 |
+
from configuration_indictrans import IndicTransConfig
|
47 |
+
from transformers.utils import logging
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__)
|
51 |
+
|
52 |
+
_CONFIG_FOR_DOC = "IndicTransConfig"
|
53 |
+
|
54 |
+
INDICTRANS_PRETRAINED_MODEL_ARCHIVE_LIST = [""]
|
55 |
+
|
56 |
+
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
|
57 |
+
"""
|
58 |
+
Shift input ids one token to the right.
|
59 |
+
"""
|
60 |
+
shifted_input_ids = jnp.zeros_like(input_ids)
|
61 |
+
shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1])
|
62 |
+
shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id)
|
63 |
+
|
64 |
+
if pad_token_id is None:
|
65 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
66 |
+
# replace possible -100 values in labels by `pad_token_id`
|
67 |
+
shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
|
68 |
+
|
69 |
+
return shifted_input_ids
|
70 |
+
|
71 |
+
|
72 |
+
class FlaxIndicTransSinusoidalPositionalEmbedding(nn.Module):
|
73 |
+
"""This module produces sinusoidal positional embeddings of any length."""
|
74 |
+
num_positions: int
|
75 |
+
embedding_dim: int
|
76 |
+
padding_idx: Optional[int] = None
|
77 |
+
|
78 |
+
# IndicTrans is set up so that if padding_idx is specified then offset the embedding ids by 2
|
79 |
+
# and adjust num_embeddings appropriately. Other models don't have this hack
|
80 |
+
offset: int = 2
|
81 |
+
|
82 |
+
def setup(self) -> None:
|
83 |
+
self.weights = self._make_weights(self.num_positions + self.offset, self.embedding_dim, padding_idx=self.padding_idx)
|
84 |
+
|
85 |
+
def _make_weights(
|
86 |
+
self,
|
87 |
+
num_embeddings: int,
|
88 |
+
embedding_dim: int,
|
89 |
+
existing_weights: Optional[jnp.array] = None,
|
90 |
+
padding_idx: Optional[int] = None
|
91 |
+
):
|
92 |
+
emb_weights = self._get_embedding(num_embeddings, embedding_dim, padding_idx)
|
93 |
+
|
94 |
+
if existing_weights is not None:
|
95 |
+
# Convert emb_weights to the same dtype as existing_weights
|
96 |
+
emb_weights = emb_weights.astype(existing_weights.dtype)
|
97 |
+
|
98 |
+
return emb_weights
|
99 |
+
|
100 |
+
def _get_embedding(
|
101 |
+
self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None
|
102 |
+
):
|
103 |
+
"""
|
104 |
+
Build sinusoidal embeddings.
|
105 |
+
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
|
106 |
+
"Attention Is All You Need".
|
107 |
+
"""
|
108 |
+
half_dim = embedding_dim // 2
|
109 |
+
emb = math.log(10000) / (half_dim - 1)
|
110 |
+
emb = jnp.exp(-emb * jnp.arange(half_dim, dtype=jnp.float32))
|
111 |
+
emb = jnp.arange(num_embeddings, dtype=jnp.float32).reshape(-1, 1) * emb.reshape(1, -1)
|
112 |
+
emb = jnp.concatenate([jnp.sin(emb), jnp.cos(emb)], axis=1).reshape(num_embeddings, -1)
|
113 |
+
|
114 |
+
if embedding_dim % 2 == 1:
|
115 |
+
# zero pad
|
116 |
+
emb = jnp.concatenate([emb, jnp.zeros((num_embeddings, 1), dtype=emb.dtype)], axis=1)
|
117 |
+
|
118 |
+
if padding_idx is not None:
|
119 |
+
emb = emb.at[padding_idx].set(0)
|
120 |
+
|
121 |
+
return emb
|
122 |
+
|
123 |
+
def __call__(
|
124 |
+
self,
|
125 |
+
input_ids: jnp.array = None,
|
126 |
+
inputs_embeds: jnp.array = None,
|
127 |
+
past_key_values_length: int = 0
|
128 |
+
):
|
129 |
+
if input_ids is not None:
|
130 |
+
bsz, seq_len = input_ids.shape
|
131 |
+
position_ids = self._create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
|
132 |
+
else:
|
133 |
+
bsz, seq_len = inputs_embeds.shape[:-1]
|
134 |
+
position_ids = self._create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length)
|
135 |
+
|
136 |
+
# Expand embeddings if needed
|
137 |
+
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
|
138 |
+
if max_pos > self.weights.shape[0]:
|
139 |
+
self.weights = self.make_weights(max_pos + self.offset, self.embedding_dim, self.weights, self.padding_idx)
|
140 |
+
|
141 |
+
return self.weights[position_ids.ravel()].reshape(bsz, seq_len, -1)
|
142 |
+
|
143 |
+
def _create_position_ids_from_input_ids(
|
144 |
+
self, input_ids, padding_idx, past_key_values_length=0
|
145 |
+
):
|
146 |
+
"""
|
147 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
148 |
+
are ignored. This is a JAX conversion of the PyTorch function.
|
149 |
+
"""
|
150 |
+
mask = (input_ids != padding_idx)
|
151 |
+
incremental_indices = (jnp.cumsum(mask, axis=1) + past_key_values_length) * mask
|
152 |
+
return incremental_indices + padding_idx
|
153 |
+
|
154 |
+
def _create_position_ids_from_inputs_embeds(
|
155 |
+
self, inputs_embeds, past_key_values_length
|
156 |
+
):
|
157 |
+
"""
|
158 |
+
Generate sequential position ids from input embeddings.
|
159 |
+
Args:
|
160 |
+
inputs_embeds: jnp.array (JAX array)
|
161 |
+
past_key_values_length: int
|
162 |
+
Returns:
|
163 |
+
jnp.array: Position IDs corresponding to the inputs.
|
164 |
+
"""
|
165 |
+
input_shape = inputs_embeds.shape[:-1]
|
166 |
+
sequence_length = input_shape[1]
|
167 |
+
|
168 |
+
position_ids = jnp.arange(self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=jnp.int64)
|
169 |
+
return jnp.expand_dims(position_ids, axis=0).repeat(input_shape[0], axis=0) + past_key_values_length
|
170 |
+
|
171 |
+
|
172 |
+
class FlaxIndicTransAttention(nn.Module):
|
173 |
+
config: IndicTransConfig
|
174 |
+
embed_dim: int
|
175 |
+
num_heads: int
|
176 |
+
dropout: float = 0.0
|
177 |
+
causal: bool = False
|
178 |
+
bias: bool = True
|
179 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
180 |
+
|
181 |
+
def setup(self) -> None:
|
182 |
+
|
183 |
+
self.head_dim = self.embed_dim // self.num_heads
|
184 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
185 |
+
raise ValueError(
|
186 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
187 |
+
f" and `num_heads`: {self.num_heads})."
|
188 |
+
)
|
189 |
+
|
190 |
+
# Not required in Flax Module as `dot_product_attention_weights` handles scaling internally.
|
191 |
+
# For more details, check: https://flax.readthedocs.io/en/latest/_modules/flax/linen/attention.html#dot_product_attention_weights
|
192 |
+
# self.scaling
|
193 |
+
|
194 |
+
dense = partial(
|
195 |
+
nn.Dense,
|
196 |
+
self.embed_dim,
|
197 |
+
use_bias=self.bias,
|
198 |
+
dtype=self.dtype,
|
199 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
200 |
+
)
|
201 |
+
|
202 |
+
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
|
203 |
+
self.out_proj = dense()
|
204 |
+
|
205 |
+
self.dropout_layer = nn.Dropout(rate=self.dropout)
|
206 |
+
|
207 |
+
if self.causal:
|
208 |
+
self.causal_mask = make_causal_mask(
|
209 |
+
jnp.ones((1, self.config.max_source_positions), dtype="bool"), dtype="bool"
|
210 |
+
)
|
211 |
+
|
212 |
+
def _split_heads(self, hidden_states):
|
213 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
|
214 |
+
|
215 |
+
def _merge_heads(self, hidden_states):
|
216 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
217 |
+
|
218 |
+
@nn.compact
|
219 |
+
def _concatenate_to_cache(self, key, value, query, attention_mask):
|
220 |
+
"""
|
221 |
+
This function takes projected key, value states from a single input token and concatenates the states to cached
|
222 |
+
states from previous steps. This function is slighly adapted from the official Flax repository:
|
223 |
+
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
|
224 |
+
"""
|
225 |
+
# detect if we're initializing by absence of existing cache data.
|
226 |
+
is_initialized = self.has_variable("cache", "cached_key")
|
227 |
+
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
|
228 |
+
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
|
229 |
+
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
|
230 |
+
|
231 |
+
if is_initialized:
|
232 |
+
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
233 |
+
# update key, value caches with our new 1d spatial slices
|
234 |
+
cur_index = cache_index.value
|
235 |
+
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
|
236 |
+
key = lax.dynamic_update_slice(cached_key.value, key, indices)
|
237 |
+
value = lax.dynamic_update_slice(cached_value.value, value, indices)
|
238 |
+
cached_key.value = key
|
239 |
+
cached_value.value = value
|
240 |
+
num_updated_cache_vectors = query.shape[1]
|
241 |
+
cache_index.value = cache_index.value + num_updated_cache_vectors
|
242 |
+
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
|
243 |
+
pad_mask = jnp.broadcast_to(
|
244 |
+
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
|
245 |
+
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
|
246 |
+
)
|
247 |
+
attention_mask = combine_masks(pad_mask, attention_mask)
|
248 |
+
return key, value, attention_mask
|
249 |
+
|
250 |
+
def __call__(
|
251 |
+
self,
|
252 |
+
hidden_states: jnp.ndarray,
|
253 |
+
key_value_states: Optional[jnp.ndarray] = None,
|
254 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
255 |
+
init_cache: bool = False,
|
256 |
+
deterministic: bool = True,
|
257 |
+
) -> Tuple[jnp.ndarray]:
|
258 |
+
"""Input shape: Batch x Time x Channel"""
|
259 |
+
|
260 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
261 |
+
# for the decoder
|
262 |
+
is_cross_attention = key_value_states is not None
|
263 |
+
batch_size = hidden_states.shape[0]
|
264 |
+
|
265 |
+
# get query proj
|
266 |
+
query_states = self.q_proj(hidden_states) # Scaling is handled internally by `dot_product_attention_weights`.
|
267 |
+
# get key, value proj
|
268 |
+
if is_cross_attention:
|
269 |
+
# cross_attentions
|
270 |
+
key_states = self.k_proj(key_value_states)
|
271 |
+
value_states = self.v_proj(key_value_states)
|
272 |
+
else:
|
273 |
+
# self_attention
|
274 |
+
key_states = self.k_proj(hidden_states)
|
275 |
+
value_states = self.v_proj(hidden_states)
|
276 |
+
|
277 |
+
query_states = self._split_heads(query_states)
|
278 |
+
key_states = self._split_heads(key_states)
|
279 |
+
value_states = self._split_heads(value_states)
|
280 |
+
|
281 |
+
# handle cache prepare causal attention mask
|
282 |
+
if self.causal:
|
283 |
+
query_length, key_length = query_states.shape[1], key_states.shape[1]
|
284 |
+
if self.has_variable("cache", "cached_key"):
|
285 |
+
mask_shift = self.variables["cache"]["cache_index"]
|
286 |
+
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
287 |
+
causal_mask = lax.dynamic_slice(
|
288 |
+
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
|
289 |
+
)
|
290 |
+
else:
|
291 |
+
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
|
292 |
+
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
|
293 |
+
|
294 |
+
# combine masks if needed
|
295 |
+
if attention_mask is not None and self.causal:
|
296 |
+
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
|
297 |
+
attention_mask = combine_masks(attention_mask, causal_mask)
|
298 |
+
elif self.causal:
|
299 |
+
attention_mask = causal_mask
|
300 |
+
elif attention_mask is not None:
|
301 |
+
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
302 |
+
|
303 |
+
# During fast autoregressive decoding, we feed one position at a time,
|
304 |
+
# and cache the keys and values step by step.
|
305 |
+
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
|
306 |
+
key_states, value_states, attention_mask = self._concatenate_to_cache(
|
307 |
+
key_states, value_states, query_states, attention_mask
|
308 |
+
)
|
309 |
+
|
310 |
+
# Convert the boolean attention mask to an attention bias.
|
311 |
+
if attention_mask is not None:
|
312 |
+
# attention mask in the form of attention bias
|
313 |
+
attention_bias = lax.select(
|
314 |
+
attention_mask > 0,
|
315 |
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
316 |
+
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
|
317 |
+
)
|
318 |
+
else:
|
319 |
+
attention_bias = None
|
320 |
+
|
321 |
+
dropout_rng = None
|
322 |
+
if not deterministic and self.dropout > 0.0:
|
323 |
+
dropout_rng = self.make_rng("dropout")
|
324 |
+
|
325 |
+
attn_weights = dot_product_attention_weights(
|
326 |
+
query_states,
|
327 |
+
key_states,
|
328 |
+
bias=attention_bias,
|
329 |
+
dropout_rng=dropout_rng,
|
330 |
+
dropout_rate=self.dropout,
|
331 |
+
broadcast_dropout=True,
|
332 |
+
deterministic=deterministic,
|
333 |
+
dtype=self.dtype,
|
334 |
+
precision="high",
|
335 |
+
)
|
336 |
+
|
337 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
|
338 |
+
attn_output = self._merge_heads(attn_output)
|
339 |
+
attn_output = self.out_proj(attn_output)
|
340 |
+
|
341 |
+
return attn_output, attn_weights
|
342 |
+
|
343 |
+
|
344 |
+
class FlaxIndicTransEncoderLayer(nn.Module):
|
345 |
+
config: IndicTransConfig
|
346 |
+
dtype: jnp.dtype = jnp.float32
|
347 |
+
|
348 |
+
def setup(self) -> None:
|
349 |
+
self.embed_dim = self.config.encoder_embed_dim
|
350 |
+
self.self_attn = FlaxIndicTransAttention(
|
351 |
+
config=self.config,
|
352 |
+
embed_dim=self.embed_dim,
|
353 |
+
num_heads=self.config.encoder_attention_heads,
|
354 |
+
dropout=self.config.attention_dropout,
|
355 |
+
dtype=self.dtype,
|
356 |
+
)
|
357 |
+
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
358 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
359 |
+
self.activation_fn = ACT2FN[self.config.activation_function]
|
360 |
+
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
|
361 |
+
self.fc1 = nn.Dense(
|
362 |
+
self.config.encoder_ffn_dim,
|
363 |
+
dtype=self.dtype,
|
364 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
365 |
+
)
|
366 |
+
self.fc2 = nn.Dense(
|
367 |
+
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
|
368 |
+
)
|
369 |
+
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
370 |
+
self.normalize_before = self.config.encoder_normalize_before
|
371 |
+
|
372 |
+
def __call__(
|
373 |
+
self,
|
374 |
+
hidden_states: jnp.ndarray,
|
375 |
+
attention_mask: jnp.ndarray,
|
376 |
+
output_attentions: bool = True,
|
377 |
+
deterministic: bool = True,
|
378 |
+
) -> Tuple[jnp.ndarray]:
|
379 |
+
residual = hidden_states
|
380 |
+
if self.normalize_before:
|
381 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
382 |
+
hidden_states, attn_weights = self.self_attn(
|
383 |
+
hidden_states=hidden_states,
|
384 |
+
attention_mask=attention_mask
|
385 |
+
|
386 |
+
)
|
387 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
388 |
+
hidden_states = residual + hidden_states
|
389 |
+
if not self.normalize_before:
|
390 |
+
hidden_states = self.attn_layer_norm(hidden_states)
|
391 |
+
|
392 |
+
residual = hidden_states
|
393 |
+
if self.normalize_before:
|
394 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
395 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
396 |
+
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
|
397 |
+
hidden_states = self.fc2(hidden_states)
|
398 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
399 |
+
hidden_states = residual + hidden_states
|
400 |
+
if not self.normalize_before:
|
401 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
402 |
+
|
403 |
+
outputs = (hidden_states,)
|
404 |
+
|
405 |
+
if output_attentions:
|
406 |
+
outputs += (attn_weights,)
|
407 |
+
|
408 |
+
return outputs
|
409 |
+
|
410 |
+
|
411 |
+
class FlaxIndicTransEncoderLayerCollection(nn.Module):
|
412 |
+
config: IndicTransConfig
|
413 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
414 |
+
|
415 |
+
def setup(self):
|
416 |
+
self.layers = [
|
417 |
+
FlaxIndicTransEncoderLayer(self.config, name=str(i), dtype=self.dtype)
|
418 |
+
for i in range(self.config.encoder_layers)
|
419 |
+
]
|
420 |
+
self.layerdrop = self.config.encoder_layerdrop
|
421 |
+
|
422 |
+
def __call__(
|
423 |
+
self,
|
424 |
+
hidden_states,
|
425 |
+
attention_mask,
|
426 |
+
deterministic: bool = True,
|
427 |
+
output_attentions: bool = False,
|
428 |
+
output_hidden_states: bool = False,
|
429 |
+
return_dict: bool = True,
|
430 |
+
):
|
431 |
+
all_attentions = () if output_attentions else None
|
432 |
+
all_hidden_states = () if output_hidden_states else None
|
433 |
+
|
434 |
+
for encoder_layer in self.layers:
|
435 |
+
if output_hidden_states:
|
436 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
437 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
438 |
+
dropout_probability = jax.random.normal(jax.random.PRNGKey(0), [])
|
439 |
+
if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
|
440 |
+
layer_outputs = (None, None)
|
441 |
+
else:
|
442 |
+
layer_outputs = encoder_layer(
|
443 |
+
hidden_states,
|
444 |
+
attention_mask,
|
445 |
+
output_attentions,
|
446 |
+
deterministic,
|
447 |
+
)
|
448 |
+
hidden_states = layer_outputs[0]
|
449 |
+
if output_attentions:
|
450 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
451 |
+
|
452 |
+
if output_hidden_states:
|
453 |
+
all_hidden_states += (hidden_states,)
|
454 |
+
|
455 |
+
outputs = (hidden_states, all_hidden_states, all_attentions)
|
456 |
+
|
457 |
+
if not return_dict:
|
458 |
+
return tuple(v for v in outputs if v is not None)
|
459 |
+
|
460 |
+
return FlaxBaseModelOutput(
|
461 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
462 |
+
)
|
463 |
+
|
464 |
+
|
465 |
+
class FlaxIndicTransDecoderLayer(nn.Module):
|
466 |
+
config: IndicTransConfig
|
467 |
+
dtype: jnp.dtype = jnp.float32
|
468 |
+
|
469 |
+
def setup(self) -> None:
|
470 |
+
self.embed_dim = self.config.decoder_embed_dim
|
471 |
+
self.self_attn = FlaxIndicTransAttention(
|
472 |
+
config=self.config,
|
473 |
+
embed_dim=self.embed_dim,
|
474 |
+
num_heads=self.config.decoder_attention_heads,
|
475 |
+
dropout=self.config.attention_dropout,
|
476 |
+
causal=True,
|
477 |
+
dtype=self.dtype,
|
478 |
+
)
|
479 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
480 |
+
self.activation_fn = ACT2FN[self.config.activation_function]
|
481 |
+
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
|
482 |
+
|
483 |
+
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
484 |
+
self.encoder_attn = FlaxIndicTransAttention(
|
485 |
+
config=self.config,
|
486 |
+
embed_dim=self.embed_dim,
|
487 |
+
num_heads=self.config.decoder_attention_heads,
|
488 |
+
dropout=self.config.attention_dropout,
|
489 |
+
causal=False,
|
490 |
+
dtype=self.dtype,
|
491 |
+
)
|
492 |
+
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
493 |
+
self.fc1 = nn.Dense(
|
494 |
+
self.config.decoder_ffn_dim,
|
495 |
+
dtype=self.dtype,
|
496 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
497 |
+
)
|
498 |
+
self.fc2 = nn.Dense(
|
499 |
+
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
|
500 |
+
)
|
501 |
+
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
502 |
+
self.normalize_before = self.config.decoder_normalize_before
|
503 |
+
|
504 |
+
def __call__(
|
505 |
+
self,
|
506 |
+
hidden_states: jnp.ndarray,
|
507 |
+
attention_mask: jnp.ndarray,
|
508 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
509 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
510 |
+
init_cache: bool = False,
|
511 |
+
output_attentions: bool = True,
|
512 |
+
deterministic: bool = True,
|
513 |
+
) -> Tuple[jnp.ndarray]:
|
514 |
+
residual = hidden_states
|
515 |
+
if self.normalize_before:
|
516 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
517 |
+
|
518 |
+
# Self Attention
|
519 |
+
hidden_states, self_attn_weights = self.self_attn(
|
520 |
+
hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache
|
521 |
+
)
|
522 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
523 |
+
hidden_states = residual + hidden_states
|
524 |
+
if not self.normalize_before:
|
525 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
526 |
+
|
527 |
+
# Cross-Attention Block
|
528 |
+
cross_attn_weights = None
|
529 |
+
if encoder_hidden_states is not None:
|
530 |
+
residual = hidden_states
|
531 |
+
if self.normalize_before:
|
532 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
533 |
+
|
534 |
+
hidden_states, cross_attn_weights = self.encoder_attn(
|
535 |
+
hidden_states=hidden_states,
|
536 |
+
key_value_states=encoder_hidden_states,
|
537 |
+
attention_mask=encoder_attention_mask,
|
538 |
+
# init_cache=init_cache
|
539 |
+
)
|
540 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
541 |
+
hidden_states = residual + hidden_states
|
542 |
+
if not self.normalize_before:
|
543 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
544 |
+
|
545 |
+
# Fully Connected
|
546 |
+
residual = hidden_states
|
547 |
+
if self.normalize_before:
|
548 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
549 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
550 |
+
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
|
551 |
+
hidden_states = self.fc2(hidden_states)
|
552 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
553 |
+
hidden_states = residual + hidden_states
|
554 |
+
if not self.normalize_before:
|
555 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
556 |
+
|
557 |
+
outputs = (hidden_states,)
|
558 |
+
|
559 |
+
if output_attentions:
|
560 |
+
outputs += (self_attn_weights, cross_attn_weights)
|
561 |
+
|
562 |
+
return outputs
|
563 |
+
|
564 |
+
|
565 |
+
class FlaxIndicTransDecoderLayerCollection(nn.Module):
|
566 |
+
config: IndicTransConfig
|
567 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
568 |
+
|
569 |
+
def setup(self):
|
570 |
+
self.layers = [
|
571 |
+
FlaxIndicTransDecoderLayer(self.config, name=str(i), dtype=self.dtype)
|
572 |
+
for i in range(self.config.decoder_layers)
|
573 |
+
]
|
574 |
+
self.layerdrop = self.config.decoder_layerdrop
|
575 |
+
|
576 |
+
def __call__(
|
577 |
+
self,
|
578 |
+
hidden_states,
|
579 |
+
attention_mask,
|
580 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
581 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
582 |
+
deterministic: bool = True,
|
583 |
+
init_cache: bool = False,
|
584 |
+
output_attentions: bool = False,
|
585 |
+
output_hidden_states: bool = False,
|
586 |
+
return_dict: bool = True,
|
587 |
+
):
|
588 |
+
# decoder layers
|
589 |
+
all_hidden_states = () if output_hidden_states else None
|
590 |
+
all_self_attns = () if output_attentions else None
|
591 |
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
592 |
+
|
593 |
+
for decoder_layer in self.layers:
|
594 |
+
if output_hidden_states:
|
595 |
+
all_hidden_states += (hidden_states,)
|
596 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
597 |
+
dropout_probability = jax.random.normal(jax.random.PRNGKey(0), [])
|
598 |
+
if not deterministic and (dropout_probability < self.layerdrop):
|
599 |
+
layer_outputs = (None, None, None)
|
600 |
+
else:
|
601 |
+
layer_outputs = decoder_layer(
|
602 |
+
hidden_states,
|
603 |
+
attention_mask=attention_mask,
|
604 |
+
encoder_hidden_states=encoder_hidden_states,
|
605 |
+
encoder_attention_mask=encoder_attention_mask,
|
606 |
+
init_cache=init_cache,
|
607 |
+
output_attentions=output_attentions,
|
608 |
+
deterministic=deterministic,
|
609 |
+
)
|
610 |
+
|
611 |
+
hidden_states = layer_outputs[0]
|
612 |
+
if output_attentions:
|
613 |
+
all_self_attns += (layer_outputs[1],)
|
614 |
+
|
615 |
+
if encoder_hidden_states is not None:
|
616 |
+
all_cross_attentions += (layer_outputs[2],)
|
617 |
+
|
618 |
+
# add hidden states from the last decoder layer
|
619 |
+
if output_hidden_states:
|
620 |
+
all_hidden_states += (hidden_states,)
|
621 |
+
|
622 |
+
outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions]
|
623 |
+
|
624 |
+
if not return_dict:
|
625 |
+
return tuple(v for v in outputs if v is not None)
|
626 |
+
|
627 |
+
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
628 |
+
last_hidden_state=hidden_states,
|
629 |
+
hidden_states=all_hidden_states,
|
630 |
+
attentions=all_self_attns,
|
631 |
+
cross_attentions=all_cross_attentions,
|
632 |
+
)
|
633 |
+
|
634 |
+
class FlaxIndicTransEncoder(nn.Module):
|
635 |
+
config: IndicTransConfig
|
636 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
637 |
+
|
638 |
+
def setup(self):
|
639 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
640 |
+
|
641 |
+
embed_dim = self.config.encoder_embed_dim
|
642 |
+
self.padding_idx = self.config.pad_token_id
|
643 |
+
self.max_source_positions = self.config.max_source_positions
|
644 |
+
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
|
645 |
+
|
646 |
+
self.embed_tokens = nn.Embed(
|
647 |
+
self.config.encoder_vocab_size,
|
648 |
+
embed_dim,
|
649 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
650 |
+
)
|
651 |
+
|
652 |
+
self.embed_positions = FlaxIndicTransSinusoidalPositionalEmbedding(
|
653 |
+
self.config.max_source_positions,
|
654 |
+
embed_dim,
|
655 |
+
self.padding_idx,
|
656 |
+
)
|
657 |
+
self.layers = FlaxIndicTransEncoderLayerCollection(self.config, self.dtype)
|
658 |
+
self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) if self.config.encoder_normalize_before else None
|
659 |
+
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) if self.config.layernorm_embedding else None
|
660 |
+
|
661 |
+
def __call__(
|
662 |
+
self,
|
663 |
+
input_ids,
|
664 |
+
attention_mask,
|
665 |
+
position_ids,
|
666 |
+
output_attentions: bool = False,
|
667 |
+
output_hidden_states: bool = False,
|
668 |
+
return_dict: bool = True,
|
669 |
+
deterministic: bool = True,
|
670 |
+
):
|
671 |
+
input_shape = input_ids.shape
|
672 |
+
input_ids = input_ids.reshape(-1, input_shape[-1])
|
673 |
+
|
674 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
675 |
+
|
676 |
+
embed_pos = self.embed_positions(input_ids, inputs_embeds)
|
677 |
+
|
678 |
+
hidden_states = inputs_embeds + embed_pos
|
679 |
+
if self.layernorm_embedding is not None:
|
680 |
+
hidden_states = self.layernorm_embedding(hidden_states)
|
681 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
682 |
+
|
683 |
+
outputs = self.layers(
|
684 |
+
hidden_states,
|
685 |
+
attention_mask,
|
686 |
+
deterministic=deterministic,
|
687 |
+
output_attentions=output_attentions,
|
688 |
+
output_hidden_states=output_hidden_states,
|
689 |
+
return_dict=return_dict,
|
690 |
+
)
|
691 |
+
|
692 |
+
last_hidden_states = outputs[0]
|
693 |
+
|
694 |
+
if self.layer_norm is not None:
|
695 |
+
last_hidden_states = self.layer_norm(last_hidden_states)
|
696 |
+
|
697 |
+
# update the last element in `hidden_states` after applying `layernorm` above
|
698 |
+
hidden_states = None
|
699 |
+
if output_hidden_states:
|
700 |
+
hidden_states = outputs[1]
|
701 |
+
hidden_states = hidden_states[:-1] + (last_hidden_states,)
|
702 |
+
|
703 |
+
if not return_dict:
|
704 |
+
outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
|
705 |
+
return tuple(v for v in outputs if v is not None)
|
706 |
+
|
707 |
+
return FlaxBaseModelOutput(
|
708 |
+
last_hidden_state=last_hidden_states,
|
709 |
+
hidden_states=hidden_states,
|
710 |
+
attentions=outputs.attentions,
|
711 |
+
)
|
712 |
+
|
713 |
+
|
714 |
+
class FlaxIndicTransDecoder(nn.Module):
|
715 |
+
config: IndicTransConfig
|
716 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
717 |
+
|
718 |
+
def setup(self):
|
719 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
720 |
+
|
721 |
+
embed_dim = self.config.encoder_embed_dim
|
722 |
+
self.padding_idx = self.config.pad_token_id
|
723 |
+
self.max_target_positions = self.config.max_target_positions
|
724 |
+
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
|
725 |
+
|
726 |
+
self.embed_tokens = nn.Embed(
|
727 |
+
self.config.decoder_vocab_size,
|
728 |
+
embed_dim,
|
729 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
730 |
+
)
|
731 |
+
|
732 |
+
self.embed_positions = FlaxIndicTransSinusoidalPositionalEmbedding(
|
733 |
+
self.config.max_target_positions,
|
734 |
+
embed_dim,
|
735 |
+
self.padding_idx,
|
736 |
+
)
|
737 |
+
|
738 |
+
self.layers = FlaxIndicTransDecoderLayerCollection(self.config, self.dtype)
|
739 |
+
self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) if self.config.decoder_normalize_before else None
|
740 |
+
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) if self.config.layernorm_embedding else None
|
741 |
+
|
742 |
+
|
743 |
+
def __call__(
|
744 |
+
self,
|
745 |
+
input_ids,
|
746 |
+
attention_mask,
|
747 |
+
position_ids,
|
748 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
749 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
750 |
+
init_cache: bool = False,
|
751 |
+
output_attentions: bool = False,
|
752 |
+
output_hidden_states: bool = False,
|
753 |
+
return_dict: bool = True,
|
754 |
+
deterministic: bool = True,
|
755 |
+
):
|
756 |
+
|
757 |
+
input_shape = input_ids.shape
|
758 |
+
input_ids = input_ids.reshape(-1, input_shape[-1])
|
759 |
+
|
760 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
761 |
+
|
762 |
+
# embed positions
|
763 |
+
positions = self.embed_positions(input_ids, inputs_embeds)
|
764 |
+
|
765 |
+
hidden_states = inputs_embeds + positions
|
766 |
+
|
767 |
+
if self.layernorm_embedding is not None:
|
768 |
+
hidden_states = self.layernorm_embedding(hidden_states)
|
769 |
+
|
770 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
771 |
+
|
772 |
+
outputs = self.layers(
|
773 |
+
hidden_states,
|
774 |
+
attention_mask,
|
775 |
+
encoder_hidden_states,
|
776 |
+
encoder_attention_mask,
|
777 |
+
deterministic=deterministic,
|
778 |
+
init_cache=init_cache,
|
779 |
+
output_attentions=output_attentions,
|
780 |
+
output_hidden_states=output_hidden_states,
|
781 |
+
return_dict=return_dict,
|
782 |
+
)
|
783 |
+
|
784 |
+
last_hidden_states = outputs[0]
|
785 |
+
|
786 |
+
if self.layer_norm is not None:
|
787 |
+
last_hidden_states = self.layer_norm(last_hidden_states)
|
788 |
+
|
789 |
+
# update the last element in `hidden_states` after applying `layernorm` above
|
790 |
+
hidden_states = None
|
791 |
+
if output_hidden_states:
|
792 |
+
hidden_states = outputs[1]
|
793 |
+
hidden_states = hidden_states[:-1] + (last_hidden_states,)
|
794 |
+
|
795 |
+
if not return_dict:
|
796 |
+
outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
|
797 |
+
return tuple(v for v in outputs if v is not None)
|
798 |
+
|
799 |
+
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
800 |
+
last_hidden_state=last_hidden_states,
|
801 |
+
hidden_states=hidden_states,
|
802 |
+
attentions=outputs.attentions,
|
803 |
+
cross_attentions=outputs.cross_attentions,
|
804 |
+
)
|
805 |
+
|
806 |
+
|
807 |
+
class FlaxIndicTransModule(nn.Module):
|
808 |
+
config: IndicTransConfig
|
809 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
810 |
+
|
811 |
+
def setup(self):
|
812 |
+
self.encoder = FlaxIndicTransEncoder(self.config, dtype=self.dtype)
|
813 |
+
self.decoder = FlaxIndicTransDecoder(self.config, dtype=self.dtype)
|
814 |
+
|
815 |
+
def _get_encoder_module(self):
|
816 |
+
return self.encoder
|
817 |
+
|
818 |
+
def _get_decoder_module(self):
|
819 |
+
return self.decoder
|
820 |
+
|
821 |
+
def __call__(
|
822 |
+
self,
|
823 |
+
input_ids,
|
824 |
+
attention_mask,
|
825 |
+
decoder_input_ids,
|
826 |
+
decoder_attention_mask,
|
827 |
+
position_ids,
|
828 |
+
decoder_position_ids,
|
829 |
+
output_attentions: bool = False,
|
830 |
+
output_hidden_states: bool = False,
|
831 |
+
return_dict: bool = True,
|
832 |
+
deterministic: bool = True,
|
833 |
+
):
|
834 |
+
encoder_outputs = self.encoder(
|
835 |
+
input_ids=input_ids,
|
836 |
+
attention_mask=attention_mask,
|
837 |
+
position_ids=position_ids,
|
838 |
+
output_attentions=output_attentions,
|
839 |
+
output_hidden_states=output_hidden_states,
|
840 |
+
return_dict=return_dict,
|
841 |
+
deterministic=deterministic,
|
842 |
+
)
|
843 |
+
|
844 |
+
decoder_outputs = self.decoder(
|
845 |
+
input_ids=decoder_input_ids,
|
846 |
+
attention_mask=decoder_attention_mask,
|
847 |
+
position_ids=decoder_position_ids,
|
848 |
+
encoder_hidden_states=encoder_outputs[0],
|
849 |
+
encoder_attention_mask=attention_mask,
|
850 |
+
output_attentions=output_attentions,
|
851 |
+
output_hidden_states=output_hidden_states,
|
852 |
+
return_dict=return_dict,
|
853 |
+
deterministic=deterministic,
|
854 |
+
)
|
855 |
+
|
856 |
+
if not return_dict:
|
857 |
+
return decoder_outputs + encoder_outputs
|
858 |
+
|
859 |
+
return FlaxSeq2SeqModelOutput(
|
860 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
861 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
862 |
+
decoder_attentions=decoder_outputs.attentions,
|
863 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
864 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
865 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
866 |
+
encoder_attentions=encoder_outputs.attentions,
|
867 |
+
)
|
868 |
+
|
869 |
+
|
870 |
+
class FlaxIndicTransPreTrainedModel(FlaxPreTrainedModel):
|
871 |
+
config_class = IndicTransConfig
|
872 |
+
base_model_prefix: str = "model"
|
873 |
+
module_class: nn.Module = None
|
874 |
+
|
875 |
+
def __init__(
|
876 |
+
self,
|
877 |
+
config: IndicTransConfig,
|
878 |
+
input_shape: Tuple[int] = (1, 1),
|
879 |
+
seed: int = 0,
|
880 |
+
dtype: jnp.dtype = jnp.float32,
|
881 |
+
_do_init: bool = True,
|
882 |
+
**kwargs,
|
883 |
+
):
|
884 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
885 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
886 |
+
|
887 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
888 |
+
# init input tensors
|
889 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
890 |
+
# make sure initialization pass will work for FlaxMBartForSequenceClassificationModule
|
891 |
+
input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id)
|
892 |
+
attention_mask = jnp.ones_like(input_ids)
|
893 |
+
decoder_input_ids = input_ids
|
894 |
+
decoder_attention_mask = jnp.ones_like(input_ids)
|
895 |
+
|
896 |
+
batch_size, sequence_length = input_ids.shape
|
897 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
898 |
+
decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
899 |
+
|
900 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
901 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
902 |
+
|
903 |
+
random_params = self.module.init(
|
904 |
+
rngs,
|
905 |
+
input_ids,
|
906 |
+
attention_mask,
|
907 |
+
decoder_input_ids,
|
908 |
+
decoder_attention_mask,
|
909 |
+
position_ids,
|
910 |
+
decoder_position_ids,
|
911 |
+
)["params"]
|
912 |
+
|
913 |
+
if params is not None:
|
914 |
+
random_params = flatten_dict(unfreeze(random_params))
|
915 |
+
params = flatten_dict(unfreeze(params))
|
916 |
+
for missing_key in self._missing_keys:
|
917 |
+
params[missing_key] = random_params[missing_key]
|
918 |
+
self._missing_keys = set()
|
919 |
+
return freeze(unflatten_dict(params))
|
920 |
+
else:
|
921 |
+
return random_params
|
922 |
+
|
923 |
+
def init_cache(self, batch_size, max_length, encoder_outputs):
|
924 |
+
# init input variables to retrieve cache
|
925 |
+
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
|
926 |
+
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
927 |
+
decoder_position_ids = jnp.broadcast_to(
|
928 |
+
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape
|
929 |
+
)
|
930 |
+
|
931 |
+
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
|
932 |
+
decoder_module = module._get_decoder_module()
|
933 |
+
return decoder_module(
|
934 |
+
decoder_input_ids,
|
935 |
+
decoder_attention_mask,
|
936 |
+
decoder_position_ids,
|
937 |
+
**kwargs,
|
938 |
+
)
|
939 |
+
|
940 |
+
init_variables = self.module.init(
|
941 |
+
jax.random.PRNGKey(0),
|
942 |
+
decoder_input_ids=decoder_input_ids,
|
943 |
+
decoder_attention_mask=decoder_attention_mask,
|
944 |
+
decoder_position_ids=decoder_position_ids,
|
945 |
+
encoder_hidden_states=encoder_outputs[0],
|
946 |
+
init_cache=True,
|
947 |
+
method=_decoder_forward, # we only need to call the decoder to init the cache
|
948 |
+
)
|
949 |
+
return unfreeze(init_variables["cache"])
|
950 |
+
|
951 |
+
def encode(
|
952 |
+
self,
|
953 |
+
input_ids: jnp.ndarray,
|
954 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
955 |
+
position_ids: Optional[jnp.ndarray] = None,
|
956 |
+
output_attentions: Optional[bool] = None,
|
957 |
+
output_hidden_states: Optional[bool] = None,
|
958 |
+
return_dict: Optional[bool] = None,
|
959 |
+
train: bool = False,
|
960 |
+
params: dict = None,
|
961 |
+
dropout_rng: PRNGKey = None,
|
962 |
+
):
|
963 |
+
|
964 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
965 |
+
output_hidden_states = (
|
966 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
967 |
+
)
|
968 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
969 |
+
|
970 |
+
if attention_mask is None:
|
971 |
+
attention_mask = jnp.ones_like(input_ids)
|
972 |
+
if position_ids is None:
|
973 |
+
batch_size, sequence_length = input_ids.shape
|
974 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
975 |
+
|
976 |
+
# Handle any PRNG if needed
|
977 |
+
rngs = {}
|
978 |
+
if dropout_rng is not None:
|
979 |
+
rngs["dropout"] = dropout_rng
|
980 |
+
|
981 |
+
def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs):
|
982 |
+
encode_module = module._get_encoder_module()
|
983 |
+
return encode_module(input_ids, attention_mask, position_ids, **kwargs)
|
984 |
+
|
985 |
+
return self.module.apply(
|
986 |
+
{"params": params or self.params},
|
987 |
+
input_ids=jnp.array(input_ids, dtype="i4"),
|
988 |
+
attention_mask=jnp.array(attention_mask, dtype="i4"),
|
989 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
990 |
+
output_attentions=output_attentions,
|
991 |
+
output_hidden_states=output_hidden_states,
|
992 |
+
return_dict=return_dict,
|
993 |
+
deterministic=not train,
|
994 |
+
rngs=rngs,
|
995 |
+
method=_encoder_forward,
|
996 |
+
)
|
997 |
+
|
998 |
+
def decode(
|
999 |
+
self,
|
1000 |
+
decoder_input_ids,
|
1001 |
+
encoder_outputs,
|
1002 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
1003 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
1004 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
1005 |
+
past_key_values: dict = None,
|
1006 |
+
output_attentions: Optional[bool] = None,
|
1007 |
+
output_hidden_states: Optional[bool] = None,
|
1008 |
+
return_dict: Optional[bool] = None,
|
1009 |
+
train: bool = False,
|
1010 |
+
params: dict = None,
|
1011 |
+
dropout_rng: PRNGKey = None,
|
1012 |
+
):
|
1013 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1014 |
+
output_hidden_states = (
|
1015 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1016 |
+
)
|
1017 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1018 |
+
|
1019 |
+
encoder_hidden_states = encoder_outputs[0]
|
1020 |
+
if encoder_attention_mask is None:
|
1021 |
+
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
1022 |
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
1023 |
+
|
1024 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
1025 |
+
if decoder_attention_mask is None:
|
1026 |
+
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
1027 |
+
|
1028 |
+
if decoder_position_ids is None:
|
1029 |
+
if past_key_values is not None:
|
1030 |
+
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
|
1031 |
+
|
1032 |
+
decoder_position_ids = jnp.broadcast_to(
|
1033 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
1034 |
+
)
|
1035 |
+
|
1036 |
+
# Handle any PRNG if needed
|
1037 |
+
rngs = {}
|
1038 |
+
if dropout_rng is not None:
|
1039 |
+
rngs["dropout"] = dropout_rng
|
1040 |
+
|
1041 |
+
inputs = {"params": params or self.params}
|
1042 |
+
|
1043 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
|
1044 |
+
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
|
1045 |
+
# it can be changed by FlaxMBartAttention module
|
1046 |
+
if past_key_values:
|
1047 |
+
inputs["cache"] = past_key_values
|
1048 |
+
mutable = ["cache"]
|
1049 |
+
else:
|
1050 |
+
mutable = False
|
1051 |
+
|
1052 |
+
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
|
1053 |
+
decoder_module = module._get_decoder_module()
|
1054 |
+
return decoder_module(
|
1055 |
+
decoder_input_ids,
|
1056 |
+
decoder_attention_mask,
|
1057 |
+
decoder_position_ids,
|
1058 |
+
**kwargs,
|
1059 |
+
)
|
1060 |
+
|
1061 |
+
outputs = self.module.apply(
|
1062 |
+
inputs,
|
1063 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
1064 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
1065 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
1066 |
+
encoder_hidden_states=encoder_hidden_states,
|
1067 |
+
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
1068 |
+
output_attentions=output_attentions,
|
1069 |
+
output_hidden_states=output_hidden_states,
|
1070 |
+
return_dict=return_dict,
|
1071 |
+
deterministic=not train,
|
1072 |
+
rngs=rngs,
|
1073 |
+
mutable=mutable,
|
1074 |
+
method=_decoder_forward,
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
# add updated cache to model output
|
1078 |
+
if past_key_values is not None and return_dict:
|
1079 |
+
outputs, past = outputs
|
1080 |
+
outputs["past_key_values"] = unfreeze(past["cache"])
|
1081 |
+
return outputs
|
1082 |
+
elif past_key_values is not None and not return_dict:
|
1083 |
+
outputs, past = outputs
|
1084 |
+
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
|
1085 |
+
|
1086 |
+
return outputs
|
1087 |
+
|
1088 |
+
def __call__(
|
1089 |
+
self,
|
1090 |
+
input_ids: jnp.ndarray,
|
1091 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
1092 |
+
decoder_input_ids: Optional[jnp.ndarray] = None,
|
1093 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
1094 |
+
position_ids: Optional[jnp.ndarray] = None,
|
1095 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
1096 |
+
output_attentions: Optional[bool] = None,
|
1097 |
+
output_hidden_states: Optional[bool] = None,
|
1098 |
+
return_dict: Optional[bool] = None,
|
1099 |
+
train: bool = False,
|
1100 |
+
params: dict = None,
|
1101 |
+
dropout_rng: PRNGKey = None,
|
1102 |
+
):
|
1103 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1104 |
+
output_hidden_states = (
|
1105 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1106 |
+
)
|
1107 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1108 |
+
|
1109 |
+
# prepare encoder inputs
|
1110 |
+
if attention_mask is None:
|
1111 |
+
attention_mask = jnp.ones_like(input_ids)
|
1112 |
+
if position_ids is None:
|
1113 |
+
batch_size, sequence_length = input_ids.shape
|
1114 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
1115 |
+
|
1116 |
+
# prepare decoder inputs
|
1117 |
+
if decoder_input_ids is None:
|
1118 |
+
decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id, self.config.decoder_start_token_id)
|
1119 |
+
if decoder_attention_mask is None:
|
1120 |
+
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
1121 |
+
if decoder_position_ids is None:
|
1122 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
1123 |
+
decoder_position_ids = jnp.broadcast_to(
|
1124 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
1125 |
+
)
|
1126 |
+
|
1127 |
+
# Handle any PRNG if needed
|
1128 |
+
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
1129 |
+
|
1130 |
+
return self.module.apply(
|
1131 |
+
{"params": params or self.params},
|
1132 |
+
input_ids=jnp.array(input_ids, dtype="i4"),
|
1133 |
+
attention_mask=jnp.array(attention_mask, dtype="i4"),
|
1134 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
1135 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
1136 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
1137 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
1138 |
+
output_attentions=output_attentions,
|
1139 |
+
output_hidden_states=output_hidden_states,
|
1140 |
+
return_dict=return_dict,
|
1141 |
+
deterministic=not train,
|
1142 |
+
rngs=rngs,
|
1143 |
+
)
|
1144 |
+
|
1145 |
+
|
1146 |
+
class FlaxIndicTransModel(FlaxIndicTransPreTrainedModel):
|
1147 |
+
config: IndicTransConfig
|
1148 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
1149 |
+
module_class = FlaxIndicTransModule
|
1150 |
+
|
1151 |
+
|
1152 |
+
class FlaxIndicTransForConditionalGenerationModule(nn.Module):
|
1153 |
+
config: IndicTransConfig
|
1154 |
+
dtype: jnp.dtype = jnp.float32
|
1155 |
+
bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
|
1156 |
+
|
1157 |
+
def setup(self):
|
1158 |
+
self.model = FlaxIndicTransModule(config=self.config, dtype=self.dtype)
|
1159 |
+
|
1160 |
+
self.lm_head = nn.Dense(
|
1161 |
+
self.config.decoder_vocab_size,
|
1162 |
+
use_bias=False,
|
1163 |
+
dtype=self.dtype,
|
1164 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
1165 |
+
)
|
1166 |
+
|
1167 |
+
def _get_encoder_module(self):
|
1168 |
+
return self.model.encoder
|
1169 |
+
|
1170 |
+
def _get_decoder_module(self):
|
1171 |
+
return self.model.decoder
|
1172 |
+
|
1173 |
+
def __call__(
|
1174 |
+
self,
|
1175 |
+
input_ids,
|
1176 |
+
attention_mask,
|
1177 |
+
decoder_input_ids,
|
1178 |
+
decoder_attention_mask,
|
1179 |
+
position_ids,
|
1180 |
+
decoder_position_ids,
|
1181 |
+
output_attentions: bool = False,
|
1182 |
+
output_hidden_states: bool = False,
|
1183 |
+
return_dict: bool = True,
|
1184 |
+
deterministic: bool = True,
|
1185 |
+
):
|
1186 |
+
outputs = self.model(
|
1187 |
+
input_ids=input_ids,
|
1188 |
+
attention_mask=attention_mask,
|
1189 |
+
decoder_input_ids=decoder_input_ids,
|
1190 |
+
decoder_attention_mask=decoder_attention_mask,
|
1191 |
+
position_ids=position_ids,
|
1192 |
+
decoder_position_ids=decoder_position_ids,
|
1193 |
+
output_attentions=output_attentions,
|
1194 |
+
output_hidden_states=output_hidden_states,
|
1195 |
+
return_dict=return_dict,
|
1196 |
+
deterministic=deterministic,
|
1197 |
+
)
|
1198 |
+
|
1199 |
+
hidden_states = outputs[0]
|
1200 |
+
|
1201 |
+
if self.config.share_decoder_input_output_embed:
|
1202 |
+
shared_embedding = self.model.variables["params"]["decoder"]["embed_tokens"]["embedding"]
|
1203 |
+
lm_logits = jax.lax.stop_gradient(self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states))
|
1204 |
+
else:
|
1205 |
+
lm_logits = jax.lax.stop_gradient(self.lm_head(hidden_states))
|
1206 |
+
|
1207 |
+
if not return_dict:
|
1208 |
+
output = (lm_logits,) + outputs[1:]
|
1209 |
+
return output
|
1210 |
+
|
1211 |
+
return FlaxSeq2SeqLMOutput(
|
1212 |
+
logits=lm_logits,
|
1213 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1214 |
+
decoder_attentions=outputs.decoder_attentions,
|
1215 |
+
cross_attentions=outputs.cross_attentions,
|
1216 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1217 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1218 |
+
encoder_attentions=outputs.encoder_attentions,
|
1219 |
+
)
|
1220 |
+
|
1221 |
+
|
1222 |
+
class FlaxIndicTransForConditionalGeneration(FlaxIndicTransPreTrainedModel):
|
1223 |
+
module_class = FlaxIndicTransForConditionalGenerationModule
|
1224 |
+
dtype: jnp.dtype = jnp.float32
|
1225 |
+
|
1226 |
+
def decode(
|
1227 |
+
self,
|
1228 |
+
decoder_input_ids,
|
1229 |
+
encoder_outputs,
|
1230 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
1231 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
1232 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
1233 |
+
past_key_values: dict = None,
|
1234 |
+
output_attentions: Optional[bool] = None,
|
1235 |
+
output_hidden_states: Optional[bool] = None,
|
1236 |
+
return_dict: Optional[bool] = None,
|
1237 |
+
train: bool = False,
|
1238 |
+
params: dict = None,
|
1239 |
+
dropout_rng: PRNGKey = None,
|
1240 |
+
):
|
1241 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1242 |
+
output_hidden_states = (
|
1243 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1244 |
+
)
|
1245 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1246 |
+
|
1247 |
+
encoder_hidden_states = encoder_outputs[0]
|
1248 |
+
if encoder_attention_mask is None:
|
1249 |
+
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
1250 |
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
1251 |
+
|
1252 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
1253 |
+
if decoder_attention_mask is None:
|
1254 |
+
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
1255 |
+
|
1256 |
+
if decoder_position_ids is None:
|
1257 |
+
if past_key_values is not None:
|
1258 |
+
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
|
1259 |
+
|
1260 |
+
decoder_position_ids = jnp.broadcast_to(
|
1261 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
1262 |
+
)
|
1263 |
+
|
1264 |
+
# Handle any PRNG if needed
|
1265 |
+
rngs = {}
|
1266 |
+
if dropout_rng is not None:
|
1267 |
+
rngs["dropout"] = dropout_rng
|
1268 |
+
|
1269 |
+
inputs = {"params": params or self.params}
|
1270 |
+
|
1271 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
|
1272 |
+
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
|
1273 |
+
# it can be changed by FlaxMBartAttention module
|
1274 |
+
if past_key_values:
|
1275 |
+
inputs["cache"] = past_key_values
|
1276 |
+
mutable = ["cache"]
|
1277 |
+
else:
|
1278 |
+
mutable = False
|
1279 |
+
|
1280 |
+
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
|
1281 |
+
decoder_module = module._get_decoder_module()
|
1282 |
+
outputs = decoder_module(
|
1283 |
+
decoder_input_ids,
|
1284 |
+
decoder_attention_mask,
|
1285 |
+
decoder_position_ids,
|
1286 |
+
**kwargs,
|
1287 |
+
)
|
1288 |
+
hidden_states = outputs[0]
|
1289 |
+
|
1290 |
+
if self.config.share_decoder_input_output_embed:
|
1291 |
+
shared_embedding = module.model.variables["params"]["decoder"]["embed_tokens"]["embedding"]
|
1292 |
+
lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
|
1293 |
+
else:
|
1294 |
+
lm_logits = module.lm_head(hidden_states)
|
1295 |
+
|
1296 |
+
return lm_logits, outputs
|
1297 |
+
|
1298 |
+
outputs = self.module.apply(
|
1299 |
+
inputs,
|
1300 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
1301 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
1302 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
1303 |
+
encoder_hidden_states=encoder_hidden_states,
|
1304 |
+
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
1305 |
+
output_attentions=output_attentions,
|
1306 |
+
output_hidden_states=output_hidden_states,
|
1307 |
+
return_dict=return_dict,
|
1308 |
+
deterministic=not train,
|
1309 |
+
rngs=rngs,
|
1310 |
+
mutable=mutable,
|
1311 |
+
method=_decoder_forward,
|
1312 |
+
)
|
1313 |
+
|
1314 |
+
if past_key_values is None:
|
1315 |
+
lm_logits, decoder_outputs = outputs
|
1316 |
+
else:
|
1317 |
+
(lm_logits, decoder_outputs), past = outputs
|
1318 |
+
|
1319 |
+
if return_dict:
|
1320 |
+
outputs = FlaxCausalLMOutputWithCrossAttentions(
|
1321 |
+
logits=lm_logits,
|
1322 |
+
hidden_states=decoder_outputs.hidden_states,
|
1323 |
+
attentions=decoder_outputs.attentions,
|
1324 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1325 |
+
)
|
1326 |
+
else:
|
1327 |
+
outputs = (lm_logits,) + decoder_outputs[1:]
|
1328 |
+
|
1329 |
+
# add updated cache to model output
|
1330 |
+
if past_key_values is not None and return_dict:
|
1331 |
+
outputs["past_key_values"] = unfreeze(past["cache"])
|
1332 |
+
return outputs
|
1333 |
+
elif past_key_values is not None and not return_dict:
|
1334 |
+
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
|
1335 |
+
|
1336 |
+
return outputs
|
1337 |
+
|
1338 |
+
def prepare_inputs_for_generation(
|
1339 |
+
self,
|
1340 |
+
decoder_input_ids,
|
1341 |
+
max_length,
|
1342 |
+
attention_mask: Optional[jax.Array] = None,
|
1343 |
+
decoder_attention_mask: Optional[jax.Array] = None,
|
1344 |
+
encoder_outputs=None,
|
1345 |
+
**kwargs,
|
1346 |
+
):
|
1347 |
+
# initializing the cache
|
1348 |
+
batch_size, seq_length = decoder_input_ids.shape
|
1349 |
+
|
1350 |
+
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
|
1351 |
+
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
1352 |
+
# But since the decoder uses a causal mask, those positions are masked anyways.
|
1353 |
+
# Thus we can create a single static attention_mask here, which is more efficient for compilation
|
1354 |
+
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
1355 |
+
if decoder_attention_mask is not None:
|
1356 |
+
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
|
1357 |
+
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
|
1358 |
+
else:
|
1359 |
+
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
|
1360 |
+
|
1361 |
+
return {
|
1362 |
+
"past_key_values": past_key_values,
|
1363 |
+
"encoder_outputs": encoder_outputs,
|
1364 |
+
"encoder_attention_mask": attention_mask,
|
1365 |
+
"decoder_attention_mask": extended_attention_mask,
|
1366 |
+
"decoder_position_ids": position_ids,
|
1367 |
+
}
|
1368 |
+
|
1369 |
+
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
1370 |
+
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
1371 |
+
model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
|
1372 |
+
return model_kwargs
|
1373 |
+
|