--- tags: - wikibio - multilingual - nlp - indicnlp datasets: - ai4bharat/IndicWikiBio language: - as - bn - hi - kn - ml - or - pa - ta - te licenses: - cc-by-nc-4.0 --- # MultiIndicWikiBioUnified MultiIndicWikiBioUnified is a multilingual, sequence-to-sequence pre-trained model, a [IndicBART](https://huggingface.co/ai4bharat/IndicBART) checkpoint fine-tuned on the 9 languages of [IndicWikiBio](https://huggingface.co/datasets/ai4bharat/IndicWikiBio) dataset. For fine-tuning details, see the [paper](https://arxiv.org/abs/2203.05437). You can use MultiIndicWikiBio to build biography generation applications for Indian languages by fine-tuning the model with supervised training data. Some salient features of the MultiIndicWikiBio are: You can read more about MultiIndicWikiBioUnified in this paper. ## Using this model in `transformers` ``` from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM from transformers import AlbertTokenizer, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicWikiBioUnified", do_lower_case=False, use_fast=False, keep_accents=True) # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicWikiBioUnified", do_lower_case=False, use_fast=False, keep_accents=True) model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicWikiBioUnified") # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicWikiBioUnified") # Some initial mapping bos_id = tokenizer._convert_token_to_id_with_added_voc("") eos_id = tokenizer._convert_token_to_id_with_added_voc("") pad_id = tokenizer._convert_token_to_id_with_added_voc("") # To get lang_id use any of ['<2as>', '<2bn>', '<2hi>', '<2kn>', '<2ml>', '<2or>', '<2pa>', '<2ta>', '<2te>'] # First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence ". inp = tokenizer(" name भीखा लाल office विधायक - 318 - हसनगंज विधान सभा निर्वाचन क्षेत्र , उत्तर प्रदेश term 1957 से 1962 nationality भारतीय<2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids out = tokenizer("<2hi> भीखा लाल ,भारत के उत्तर प्रदेश की दूसरी विधानसभा सभा में विधायक रहे। ", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:]) # For loss model_outputs.loss ## This is not label smoothed. # For logits model_outputs.logits # For generation. Pardon the messiness. Note the decoder_start_token_id. model.eval() # Set dropouts to zero model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>")) # Decode to get output strings decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # भीखा लाल ,भारत के उत्तर प्रदेश की दूसरी विधानसभा सभा में विधायक रहे। # Disclaimer Note that if your output language is not Hindi or Marathi, you should convert its script from Devanagari to the desired language using the [Indic NLP Library](https://github.com/AI4Bharat/indic-bart/blob/main/indic_scriptmap.py). ``` # Note: If you wish to use any language written in a non-Devanagari script, then you should first convert it to Devanagari using the Indic NLP Library. After you get the output, you should convert it back into the original script. ## Benchmarks Scores on the `IndicWikiBio` test sets are as follows: Language | RougeL ---------|---------------------------- as | 56.28 bn | 57.42 hi | 67.48 kn | 40.01 ml | 38.84 or | 67.13 pa | 52.88 ta | 51.82 te | 51.43 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{Kumar2022IndicNLGSM, title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages}, author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar}, year={2022}, url = "https://arxiv.org/abs/2203.05437" } ``` # License The model is available under the MIT License.