himani commited on
Commit
a60de7e
1 Parent(s): 34ccf76

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -1
README.md CHANGED
@@ -1,3 +1,102 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - paraphrase-generation
4
+ - multilingual
5
+ - nlp
6
+ - indicnlp
7
+ datasets:
8
+ - ai4bharat/IndicParaphrase
9
+ language:
10
+ - as
11
+ - bn
12
+ - gu
13
+ - hi
14
+ - kn
15
+ - ml
16
+ - mr
17
+ - or
18
+ - pa
19
+ - ta
20
+ - te
21
+ licenses:
22
+ - cc-by-nc-4.0
23
+
24
+
25
  ---
26
+
27
+ # MultiIndicParaphraseGeneration
28
+
29
+ This repository contains the [IndicBART](https://huggingface.co/ai4bharat/IndicBART) checkpoint finetuned on the 11 languages of [IndicParaphrase](https://huggingface.co/datasets/ai4bharat/IndicParaphrase) dataset. For finetuning details,
30
+ see the [paper](https://arxiv.org/abs/2203.05437).
31
+
32
+
33
+ ## Using this model in `transformers`
34
+
35
+ ```
36
+ from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
37
+ from transformers import AlbertTokenizer, AutoTokenizer
38
+ tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicParaphraseGeneration", do_lower_case=False, use_fast=False, keep_accents=True)
39
+ # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicParaphraseGeneration", do_lower_case=False, use_fast=False, keep_accents=True)
40
+ model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicParaphraseGeneration")
41
+ # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicParaphraseGeneration")
42
+ # Some initial mapping
43
+ bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
44
+ eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
45
+ pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
46
+ # To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>']
47
+ # First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
48
+ inp = tokenizer("I am a boy </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[ 466, 1981, 80, 25573, 64001, 64004]])
49
+
50
+ # For generation. Pardon the messiness. Note the decoder_start_token_id.
51
+ model.eval() # Set dropouts to zero
52
+ model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
53
+ # Decode to get output strings
54
+ decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
55
+ print(decoded_output) # I am a boy
56
+ # Note that if your output language is not Hindi or Marathi, you should convert its script from Devanagari to the desired language using the Indic NLP Library.
57
+ # What if we mask?
58
+ inp = tokenizer("I am [MASK] </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
59
+ model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
60
+ decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
61
+ print(decoded_output) # I am happy
62
+ inp = tokenizer("मैं [MASK] हूँ </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
63
+ model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
64
+ decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
65
+ print(decoded_output) # मैं जानता हूँ
66
+ inp = tokenizer("मला [MASK] पाहिजे </s> <2mr>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
67
+ model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
68
+ decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
69
+ print(decoded_output) # मला ओळखलं पाहिजे
70
+ ```
71
+
72
+ ## Benchmarks
73
+
74
+ Scores on the `IndicParaphrase` test sets are as follows:
75
+
76
+ Language | BLEU / Self-BLEU / iBLEU
77
+ ---------|----------------------------
78
+ as | 1.66 / 2.06 / 0.54
79
+ bn | 11.57 / 1.69 / 0.54
80
+ gu | 22.10 / 2.76 / 7.59
81
+ hi | 27.29 / 2.87 / 14.64
82
+ kn | 15.40 / 2.98 / 18.24
83
+ ml | 10.57 / 1.70 / 9.89
84
+ mr | 20.38 / 2.20 / 6.89
85
+ or | 19.26 / 2.10 / 13.61
86
+ pa | 14.87 / 1.35 / 10.00
87
+ ta | 18.52 / 2.88 / 12.10
88
+ te | 16.70 / 3.34 / 10.69
89
+
90
+
91
+
92
+ ## Citation
93
+
94
+ If you use this model, please cite the following paper:
95
+ ```
96
+ @inproceedings{Kumar2022IndicNLGSM,
97
+ title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages},
98
+ author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar},
99
+ year={2022},
100
+ url = "https://arxiv.org/abs/2203.05437"
101
+ }
102
+ ```