File size: 2,166 Bytes
f6bc964 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: microsoft/swinv2-base-patch4-window12-192-22k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Psoriasis-Project-M-swinv2-base-patch4-window12-192-22k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Psoriasis-Project-M-swinv2-base-patch4-window12-192-22k
This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window12-192-22k](https://huggingface.co/microsoft/swinv2-base-patch4-window12-192-22k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2385
- Accuracy: 0.9167
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.92 | 6 | 0.3476 | 0.9167 |
| 0.0528 | 2.0 | 13 | 0.2577 | 0.9167 |
| 0.0528 | 2.92 | 19 | 0.3270 | 0.9167 |
| 0.0535 | 4.0 | 26 | 0.3330 | 0.8542 |
| 0.0176 | 4.92 | 32 | 0.2745 | 0.8958 |
| 0.0176 | 6.0 | 39 | 0.3743 | 0.8958 |
| 0.0337 | 6.92 | 45 | 0.3473 | 0.8958 |
| 0.0066 | 8.0 | 52 | 0.2628 | 0.9167 |
| 0.0066 | 8.92 | 58 | 0.2392 | 0.9167 |
| 0.0049 | 9.23 | 60 | 0.2385 | 0.9167 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|