ahmedALM1221 commited on
Commit
6dcb75b
1 Parent(s): 579406e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -0
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-eurosat-50
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: Skin_Cancer
19
+ split: train
20
+ args: Skin_Cancer
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.8338983050847457
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-eurosat-50
31
+
32
+ This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.5108
35
+ - Accuracy: 0.8339
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 3e-05
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 16
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 64
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.005
63
+ - num_epochs: 30
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | No log | 0.97 | 18 | 1.3358 | 0.5017 |
70
+ | 1.7327 | 2.0 | 37 | 0.9711 | 0.6102 |
71
+ | 1.1314 | 2.97 | 55 | 0.6877 | 0.7254 |
72
+ | 0.7956 | 4.0 | 74 | 0.6924 | 0.7458 |
73
+ | 0.6511 | 4.97 | 92 | 0.7236 | 0.6915 |
74
+ | 0.5609 | 6.0 | 111 | 0.5625 | 0.8169 |
75
+ | 0.4585 | 6.97 | 129 | 0.5356 | 0.8102 |
76
+ | 0.3988 | 8.0 | 148 | 0.8137 | 0.7186 |
77
+ | 0.35 | 8.97 | 166 | 0.5569 | 0.8136 |
78
+ | 0.3431 | 10.0 | 185 | 0.6979 | 0.7729 |
79
+ | 0.2888 | 10.97 | 203 | 0.5444 | 0.8 |
80
+ | 0.2553 | 12.0 | 222 | 0.6462 | 0.7729 |
81
+ | 0.2263 | 12.97 | 240 | 0.5093 | 0.8373 |
82
+ | 0.2263 | 14.0 | 259 | 0.5331 | 0.8169 |
83
+ | 0.2323 | 14.97 | 277 | 0.5521 | 0.8203 |
84
+ | 0.1601 | 16.0 | 296 | 0.5984 | 0.7831 |
85
+ | 0.1645 | 16.97 | 314 | 0.6850 | 0.7932 |
86
+ | 0.202 | 18.0 | 333 | 0.5786 | 0.8 |
87
+ | 0.1762 | 18.97 | 351 | 0.5961 | 0.8305 |
88
+ | 0.1546 | 20.0 | 370 | 0.6169 | 0.8373 |
89
+ | 0.1583 | 20.97 | 388 | 0.4907 | 0.8373 |
90
+ | 0.1168 | 22.0 | 407 | 0.4846 | 0.8508 |
91
+ | 0.1193 | 22.97 | 425 | 0.5030 | 0.8475 |
92
+ | 0.1275 | 24.0 | 444 | 0.5287 | 0.8373 |
93
+ | 0.1214 | 24.97 | 462 | 0.5240 | 0.8407 |
94
+ | 0.1107 | 26.0 | 481 | 0.5439 | 0.8407 |
95
+ | 0.1107 | 26.97 | 499 | 0.4901 | 0.8305 |
96
+ | 0.0921 | 28.0 | 518 | 0.5037 | 0.8407 |
97
+ | 0.1105 | 28.97 | 536 | 0.5105 | 0.8305 |
98
+ | 0.0883 | 29.19 | 540 | 0.5108 | 0.8339 |
99
+
100
+
101
+ ### Framework versions
102
+
103
+ - Transformers 4.30.2
104
+ - Pytorch 2.0.1+cu118
105
+ - Datasets 2.13.1
106
+ - Tokenizers 0.13.3