Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: habanoz/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1
|
3 |
+
datasets:
|
4 |
+
- databricks/databricks-dolly-15k
|
5 |
+
inference: false
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
license: apache-2.0
|
9 |
+
model_creator: habanoz
|
10 |
+
model_name: TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1
|
11 |
+
pipeline_tag: text-generation
|
12 |
+
quantized_by: afrideva
|
13 |
+
tags:
|
14 |
+
- gguf
|
15 |
+
- ggml
|
16 |
+
- quantized
|
17 |
+
- q2_k
|
18 |
+
- q3_k_m
|
19 |
+
- q4_k_m
|
20 |
+
- q5_k_m
|
21 |
+
- q6_k
|
22 |
+
- q8_0
|
23 |
+
---
|
24 |
+
# habanoz/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1-GGUF
|
25 |
+
|
26 |
+
Quantized GGUF model files for [TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1](https://huggingface.co/habanoz/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1) from [habanoz](https://huggingface.co/habanoz)
|
27 |
+
|
28 |
+
|
29 |
+
| Name | Quant method | Size |
|
30 |
+
| ---- | ---- | ---- |
|
31 |
+
| [tinyllama-1.1b-2t-lr-2e-4-3ep-dolly-15k-instruct-v1.fp16.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1-GGUF/resolve/main/tinyllama-1.1b-2t-lr-2e-4-3ep-dolly-15k-instruct-v1.fp16.gguf) | fp16 | 2.20 GB |
|
32 |
+
| [tinyllama-1.1b-2t-lr-2e-4-3ep-dolly-15k-instruct-v1.q2_k.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1-GGUF/resolve/main/tinyllama-1.1b-2t-lr-2e-4-3ep-dolly-15k-instruct-v1.q2_k.gguf) | q2_k | 483.12 MB |
|
33 |
+
| [tinyllama-1.1b-2t-lr-2e-4-3ep-dolly-15k-instruct-v1.q3_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1-GGUF/resolve/main/tinyllama-1.1b-2t-lr-2e-4-3ep-dolly-15k-instruct-v1.q3_k_m.gguf) | q3_k_m | 550.82 MB |
|
34 |
+
| [tinyllama-1.1b-2t-lr-2e-4-3ep-dolly-15k-instruct-v1.q4_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1-GGUF/resolve/main/tinyllama-1.1b-2t-lr-2e-4-3ep-dolly-15k-instruct-v1.q4_k_m.gguf) | q4_k_m | 668.79 MB |
|
35 |
+
| [tinyllama-1.1b-2t-lr-2e-4-3ep-dolly-15k-instruct-v1.q5_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1-GGUF/resolve/main/tinyllama-1.1b-2t-lr-2e-4-3ep-dolly-15k-instruct-v1.q5_k_m.gguf) | q5_k_m | 783.02 MB |
|
36 |
+
| [tinyllama-1.1b-2t-lr-2e-4-3ep-dolly-15k-instruct-v1.q6_k.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1-GGUF/resolve/main/tinyllama-1.1b-2t-lr-2e-4-3ep-dolly-15k-instruct-v1.q6_k.gguf) | q6_k | 904.39 MB |
|
37 |
+
| [tinyllama-1.1b-2t-lr-2e-4-3ep-dolly-15k-instruct-v1.q8_0.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1-GGUF/resolve/main/tinyllama-1.1b-2t-lr-2e-4-3ep-dolly-15k-instruct-v1.q8_0.gguf) | q8_0 | 1.17 GB |
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
## Original Model Card:
|
42 |
+
TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T finetuned using dolly dataset.
|
43 |
+
|
44 |
+
Training took 1 hour on an 'ml.g5.xlarge' instance.
|
45 |
+
|
46 |
+
|
47 |
+
```python
|
48 |
+
hyperparameters ={
|
49 |
+
'num_train_epochs': 3, # number of training epochs
|
50 |
+
'per_device_train_batch_size': 6, # batch size for training
|
51 |
+
'gradient_accumulation_steps': 2, # Number of updates steps to accumulate
|
52 |
+
'gradient_checkpointing': True, # save memory but slower backward pass
|
53 |
+
'bf16': True, # use bfloat16 precision
|
54 |
+
'tf32': True, # use tf32 precision
|
55 |
+
'learning_rate': 2e-4, # learning rate
|
56 |
+
'max_grad_norm': 0.3, # Maximum norm (for gradient clipping)
|
57 |
+
'warmup_ratio': 0.03, # warmup ratio
|
58 |
+
"lr_scheduler_type":"constant", # learning rate scheduler
|
59 |
+
'save_strategy': "epoch", # save strategy for checkpoints
|
60 |
+
"logging_steps": 10, # log every x steps
|
61 |
+
'merge_adapters': True, # wether to merge LoRA into the model (needs more memory)
|
62 |
+
'use_flash_attn': True, # Whether to use Flash Attention
|
63 |
+
}
|
64 |
+
|
65 |
+
```
|