Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Felladrin/Llama-160M-Chat-v1
|
3 |
+
datasets:
|
4 |
+
- ehartford/wizard_vicuna_70k_unfiltered
|
5 |
+
- totally-not-an-llm/EverythingLM-data-V3
|
6 |
+
- Open-Orca/SlimOrca-Dedup
|
7 |
+
- databricks/databricks-dolly-15k
|
8 |
+
- THUDM/webglm-qa
|
9 |
+
inference: false
|
10 |
+
license: other
|
11 |
+
model_creator: Felladrin
|
12 |
+
model_name: Llama-160M-Chat-v1
|
13 |
+
pipeline_tag: text-generation
|
14 |
+
quantized_by: afrideva
|
15 |
+
tags:
|
16 |
+
- text-generation
|
17 |
+
- gguf
|
18 |
+
- ggml
|
19 |
+
- quantized
|
20 |
+
- q2_k
|
21 |
+
- q3_k_m
|
22 |
+
- q4_k_m
|
23 |
+
- q5_k_m
|
24 |
+
- q6_k
|
25 |
+
- q8_0
|
26 |
+
widget:
|
27 |
+
- text: "<|im_start|>system\nYou are a helpful assistant, who answers with empathy.<|im_end|>\n<|im_start|>user\nGot
|
28 |
+
a question for you!<|im_end|>\n<|im_start|>assistant\nSure! What's it?<|im_end|>\n<|im_start|>user\nWhy
|
29 |
+
do you love cats so much!? \U0001F408<|im_end|>\n<|im_start|>assistant"
|
30 |
+
- text: '<|im_start|>system
|
31 |
+
|
32 |
+
You are a helpful assistant who answers user''s questions with empathy.<|im_end|>
|
33 |
+
|
34 |
+
<|im_start|>user
|
35 |
+
|
36 |
+
Who is Mona Lisa?<|im_end|>
|
37 |
+
|
38 |
+
<|im_start|>assistant'
|
39 |
+
- text: '<|im_start|>system
|
40 |
+
|
41 |
+
You are a helpful assistant who provides concise responses.<|im_end|>
|
42 |
+
|
43 |
+
<|im_start|>user
|
44 |
+
|
45 |
+
Heya!<|im_end|>
|
46 |
+
|
47 |
+
<|im_start|>assistant
|
48 |
+
|
49 |
+
Hi! How may I help you today?<|im_end|>
|
50 |
+
|
51 |
+
<|im_start|>user
|
52 |
+
|
53 |
+
I need to build a simple website. Where should I start learning about web development?<|im_end|>
|
54 |
+
|
55 |
+
<|im_start|>assistant'
|
56 |
+
- text: '<|im_start|>user
|
57 |
+
|
58 |
+
Invited some friends to come home today. Give me some ideas for games to play
|
59 |
+
with them!<|im_end|>
|
60 |
+
|
61 |
+
<|im_start|>assistant'
|
62 |
+
- text: '<|im_start|>system
|
63 |
+
|
64 |
+
You are a helpful assistant who answers user''s questions with details and curiosity.<|im_end|>
|
65 |
+
|
66 |
+
<|im_start|>user
|
67 |
+
|
68 |
+
What are some potential applications for quantum computing?<|im_end|>
|
69 |
+
|
70 |
+
<|im_start|>assistant'
|
71 |
+
- text: '<|im_start|>system
|
72 |
+
|
73 |
+
You are a helpful assistant who gives creative responses.<|im_end|>
|
74 |
+
|
75 |
+
<|im_start|>user
|
76 |
+
|
77 |
+
Write the specs of a game about mages in a fantasy world.<|im_end|>
|
78 |
+
|
79 |
+
<|im_start|>assistant'
|
80 |
+
- text: '<|im_start|>system
|
81 |
+
|
82 |
+
You are a helpful assistant who answers user''s questions with details.<|im_end|>
|
83 |
+
|
84 |
+
<|im_start|>user
|
85 |
+
|
86 |
+
Tell me about the pros and cons of social media.<|im_end|>
|
87 |
+
|
88 |
+
<|im_start|>assistant'
|
89 |
+
- text: '<|im_start|>system
|
90 |
+
|
91 |
+
You are a helpful assistant who answers user''s questions with confidence.<|im_end|>
|
92 |
+
|
93 |
+
<|im_start|>user
|
94 |
+
|
95 |
+
What is a dog?<|im_end|>
|
96 |
+
|
97 |
+
<|im_start|>assistant
|
98 |
+
|
99 |
+
A dog is a four-legged, domesticated animal that is a member of the class Mammalia,
|
100 |
+
which includes all mammals. Dogs are known for their loyalty, playfulness, and
|
101 |
+
ability to be trained for various tasks. They are also used for hunting, herding,
|
102 |
+
and as service animals.<|im_end|>
|
103 |
+
|
104 |
+
<|im_start|>user
|
105 |
+
|
106 |
+
What is the color of an apple?<|im_end|>
|
107 |
+
|
108 |
+
<|im_start|>assistant'
|
109 |
+
---
|
110 |
+
# Felladrin/Llama-160M-Chat-v1-GGUF
|
111 |
+
|
112 |
+
Quantized GGUF model files for [Llama-160M-Chat-v1](https://huggingface.co/Felladrin/Llama-160M-Chat-v1) from [Felladrin](https://huggingface.co/Felladrin)
|
113 |
+
|
114 |
+
|
115 |
+
| Name | Quant method | Size |
|
116 |
+
| ---- | ---- | ---- |
|
117 |
+
| [llama-160m-chat-v1.fp16.gguf](https://huggingface.co/afrideva/Llama-160M-Chat-v1-GGUF/resolve/main/llama-160m-chat-v1.fp16.gguf) | fp16 | 326.58 MB |
|
118 |
+
| [llama-160m-chat-v1.q2_k.gguf](https://huggingface.co/afrideva/Llama-160M-Chat-v1-GGUF/resolve/main/llama-160m-chat-v1.q2_k.gguf) | q2_k | 77.23 MB |
|
119 |
+
| [llama-160m-chat-v1.q3_k_m.gguf](https://huggingface.co/afrideva/Llama-160M-Chat-v1-GGUF/resolve/main/llama-160m-chat-v1.q3_k_m.gguf) | q3_k_m | 87.54 MB |
|
120 |
+
| [llama-160m-chat-v1.q4_k_m.gguf](https://huggingface.co/afrideva/Llama-160M-Chat-v1-GGUF/resolve/main/llama-160m-chat-v1.q4_k_m.gguf) | q4_k_m | 104.03 MB |
|
121 |
+
| [llama-160m-chat-v1.q5_k_m.gguf](https://huggingface.co/afrideva/Llama-160M-Chat-v1-GGUF/resolve/main/llama-160m-chat-v1.q5_k_m.gguf) | q5_k_m | 119.04 MB |
|
122 |
+
| [llama-160m-chat-v1.q6_k.gguf](https://huggingface.co/afrideva/Llama-160M-Chat-v1-GGUF/resolve/main/llama-160m-chat-v1.q6_k.gguf) | q6_k | 135.00 MB |
|
123 |
+
| [llama-160m-chat-v1.q8_0.gguf](https://huggingface.co/afrideva/Llama-160M-Chat-v1-GGUF/resolve/main/llama-160m-chat-v1.q8_0.gguf) | q8_0 | 174.33 MB |
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
## Original Model Card:
|
128 |
+
# A Llama Chat Model of 160M Parameters
|
129 |
+
|
130 |
+
- Base model: [JackFram/llama-160m](https://huggingface.co/JackFram/llama-160m)
|
131 |
+
- Datasets:
|
132 |
+
- [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered)
|
133 |
+
- [totally-not-an-llm/EverythingLM-data-V3](https://huggingface.co/datasets/totally-not-an-llm/EverythingLM-data-V3)
|
134 |
+
- [Open-Orca/SlimOrca-Dedup](https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup)
|
135 |
+
- [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k)
|
136 |
+
- [THUDM/webglm-qa](https://huggingface.co/datasets/THUDM/webglm-qa)
|
137 |
+
- Availability in other ML formats:
|
138 |
+
- GGUF: [Felladrin/gguf-Llama-160M-Chat-v1](https://huggingface.co/Felladrin/gguf-Llama-160M-Chat-v1)
|
139 |
+
- ONNX: [Felladrin/onnx-Llama-160M-Chat-v1](https://huggingface.co/Felladrin/onnx-Llama-160M-Chat-v1)
|
140 |
+
|
141 |
+
## Recommended Prompt Format
|
142 |
+
|
143 |
+
The recommended prompt format is as follows:
|
144 |
+
|
145 |
+
```
|
146 |
+
<|im_start|>system
|
147 |
+
{system_message}<|im_end|>
|
148 |
+
<|im_start|>user
|
149 |
+
{user_message}<|im_end|>
|
150 |
+
<|im_start|>assistant
|
151 |
+
```
|
152 |
+
|
153 |
+
## Recommended Inference Parameters
|
154 |
+
|
155 |
+
To get the best results, prefer using [contrastive search](https://huggingface.co/docs/transformers/main/en/generation_strategies#contrastive-search) for inference:
|
156 |
+
|
157 |
+
```yml
|
158 |
+
penalty_alpha: 0.5
|
159 |
+
top_k: 5
|
160 |
+
```
|