aditira commited on
Commit
ad8c76a
1 Parent(s): f180878

End of training

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: emotion_classification
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.4875
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # emotion_classification
32
+
33
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 1.3327
36
+ - Accuracy: 0.4875
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 16
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 64
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 15
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 1.8526 | 1.0 | 10 | 1.8929 | 0.3563 |
71
+ | 1.7464 | 2.0 | 20 | 1.7105 | 0.3625 |
72
+ | 1.6096 | 3.0 | 30 | 1.5898 | 0.4625 |
73
+ | 1.4988 | 4.0 | 40 | 1.5056 | 0.5188 |
74
+ | 1.4218 | 5.0 | 50 | 1.4349 | 0.4938 |
75
+ | 1.3439 | 6.0 | 60 | 1.4127 | 0.525 |
76
+ | 1.2799 | 7.0 | 70 | 1.3780 | 0.55 |
77
+ | 1.2037 | 8.0 | 80 | 1.3463 | 0.5 |
78
+ | 1.1637 | 9.0 | 90 | 1.3236 | 0.55 |
79
+ | 1.1361 | 10.0 | 100 | 1.2950 | 0.5437 |
80
+ | 1.0836 | 11.0 | 110 | 1.3059 | 0.525 |
81
+ | 1.046 | 12.0 | 120 | 1.2707 | 0.525 |
82
+ | 1.0277 | 13.0 | 130 | 1.2686 | 0.5563 |
83
+ | 1.0236 | 14.0 | 140 | 1.2790 | 0.5062 |
84
+ | 0.9926 | 15.0 | 150 | 1.2763 | 0.5687 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.33.1
90
+ - Pytorch 2.0.1+cu118
91
+ - Datasets 2.14.5
92
+ - Tokenizers 0.13.3