End of training
Browse files
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-224-in21k
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: emotion_classification
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.4875
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# emotion_classification
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.3327
|
36 |
+
- Accuracy: 0.4875
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 16
|
57 |
+
- eval_batch_size: 16
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 64
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 15
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 1.8526 | 1.0 | 10 | 1.8929 | 0.3563 |
|
71 |
+
| 1.7464 | 2.0 | 20 | 1.7105 | 0.3625 |
|
72 |
+
| 1.6096 | 3.0 | 30 | 1.5898 | 0.4625 |
|
73 |
+
| 1.4988 | 4.0 | 40 | 1.5056 | 0.5188 |
|
74 |
+
| 1.4218 | 5.0 | 50 | 1.4349 | 0.4938 |
|
75 |
+
| 1.3439 | 6.0 | 60 | 1.4127 | 0.525 |
|
76 |
+
| 1.2799 | 7.0 | 70 | 1.3780 | 0.55 |
|
77 |
+
| 1.2037 | 8.0 | 80 | 1.3463 | 0.5 |
|
78 |
+
| 1.1637 | 9.0 | 90 | 1.3236 | 0.55 |
|
79 |
+
| 1.1361 | 10.0 | 100 | 1.2950 | 0.5437 |
|
80 |
+
| 1.0836 | 11.0 | 110 | 1.3059 | 0.525 |
|
81 |
+
| 1.046 | 12.0 | 120 | 1.2707 | 0.525 |
|
82 |
+
| 1.0277 | 13.0 | 130 | 1.2686 | 0.5563 |
|
83 |
+
| 1.0236 | 14.0 | 140 | 1.2790 | 0.5062 |
|
84 |
+
| 0.9926 | 15.0 | 150 | 1.2763 | 0.5687 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.33.1
|
90 |
+
- Pytorch 2.0.1+cu118
|
91 |
+
- Datasets 2.14.5
|
92 |
+
- Tokenizers 0.13.3
|