adigo commited on
Commit
eb4f412
1 Parent(s): 85e317a

Training complete

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  library_name: transformers
3
- license: mit
4
- base_model: emilyalsentzer/Bio_ClinicalBERT
5
  tags:
6
  - generated_from_trainer
7
  datasets:
@@ -26,16 +26,16 @@ model-index:
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.8054892601431981
30
  - name: Recall
31
  type: recall
32
- value: 0.8576874205844981
33
  - name: F1
34
  type: f1
35
- value: 0.8307692307692307
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.9840901352648033
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,13 +43,13 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  # bert-finetuned-ner
45
 
46
- This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the ncbi_disease dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.0635
49
- - Precision: 0.8055
50
- - Recall: 0.8577
51
- - F1: 0.8308
52
- - Accuracy: 0.9841
53
 
54
  ## Model description
55
 
@@ -80,9 +80,9 @@ The following hyperparameters were used during training:
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
- | 0.1248 | 1.0 | 680 | 0.0550 | 0.7560 | 0.8386 | 0.7952 | 0.9823 |
84
- | 0.0393 | 2.0 | 1360 | 0.0562 | 0.7740 | 0.8310 | 0.8015 | 0.9832 |
85
- | 0.0147 | 3.0 | 2040 | 0.0635 | 0.8055 | 0.8577 | 0.8308 | 0.9841 |
86
 
87
 
88
  ### Framework versions
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ base_model: bert-base-cased
5
  tags:
6
  - generated_from_trainer
7
  datasets:
 
26
  metrics:
27
  - name: Precision
28
  type: precision
29
+ value: 0.7806004618937644
30
  - name: Recall
31
  type: recall
32
+ value: 0.8589580686149937
33
  - name: F1
34
  type: f1
35
+ value: 0.8179068360556564
36
  - name: Accuracy
37
  type: accuracy
38
+ value: 0.9826963774430474
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  # bert-finetuned-ner
45
 
46
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the ncbi_disease dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.0745
49
+ - Precision: 0.7806
50
+ - Recall: 0.8590
51
+ - F1: 0.8179
52
+ - Accuracy: 0.9827
53
 
54
  ## Model description
55
 
 
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | 0.1184 | 1.0 | 680 | 0.0607 | 0.7512 | 0.8285 | 0.7879 | 0.9823 |
84
+ | 0.044 | 2.0 | 1360 | 0.0616 | 0.7635 | 0.8450 | 0.8022 | 0.9832 |
85
+ | 0.0159 | 3.0 | 2040 | 0.0745 | 0.7806 | 0.8590 | 0.8179 | 0.9827 |
86
 
87
 
88
  ### Framework versions