Training complete
Browse files
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
license:
|
4 |
-
base_model:
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
@@ -26,16 +26,16 @@ model-index:
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
-
value: 0.
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
-
value: 0.
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,13 +43,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
# bert-finetuned-ner
|
45 |
|
46 |
-
This model is a fine-tuned version of [
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 0.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
-
- Accuracy: 0.
|
53 |
|
54 |
## Model description
|
55 |
|
@@ -80,9 +80,9 @@ The following hyperparameters were used during training:
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
|
87 |
|
88 |
### Framework versions
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: bert-base-cased
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
+
value: 0.7806004618937644
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
+
value: 0.8589580686149937
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
+
value: 0.8179068360556564
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
+
value: 0.9826963774430474
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
# bert-finetuned-ner
|
45 |
|
46 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the ncbi_disease dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.0745
|
49 |
+
- Precision: 0.7806
|
50 |
+
- Recall: 0.8590
|
51 |
+
- F1: 0.8179
|
52 |
+
- Accuracy: 0.9827
|
53 |
|
54 |
## Model description
|
55 |
|
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
+
| 0.1184 | 1.0 | 680 | 0.0607 | 0.7512 | 0.8285 | 0.7879 | 0.9823 |
|
84 |
+
| 0.044 | 2.0 | 1360 | 0.0616 | 0.7635 | 0.8450 | 0.8022 | 0.9832 |
|
85 |
+
| 0.0159 | 3.0 | 2040 | 0.0745 | 0.7806 | 0.8590 | 0.8179 | 0.9827 |
|
86 |
|
87 |
|
88 |
### Framework versions
|