File size: 8,280 Bytes
d3772a0 ea1a3cb 092dbe7 d3772a0 737a62c 02050a7 737a62c 02050a7 737a62c b7272fd cc83da6 b7272fd 737a62c 9536b40 25442a5 9536b40 737a62c 02050a7 737a62c 02050a7 737a62c 02050a7 737a62c 02050a7 737a62c 02050a7 737a62c 02050a7 737a62c 02050a7 737a62c 02050a7 737a62c 02050a7 a7c90fa 092dbe7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
---
license: other
tags:
- llm
- fine-tune
- yi
datasets:
- adamo1139/AEZAKMI_v2
license_name: yi-license
license_link: LICENSE
model-index:
- name: Yi-34B-200K-AEZAKMI-v2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 67.92
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.61
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.22
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 56.74
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.61
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 58.91
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2
name: Open LLM Leaderboard
---
## Model description
Yi-34B 200K base model fine-tuned on AEZAKMI v2 dataset. Training took around 25 hours on single local RTX 3090 Ti.
It's like airoboros but with less gptslop, no refusals and less typical language used by RLHFed OpenAI models.
Say goodbye to "It's important to remember"! \
Prompt format is standard chatml. Don't expect it to be good at math, riddles or be crazy smart. My end goal with AEZAKMI is to create a cozy free chatbot.
Cost of this fine-tune is about $10 in electricity. It took me 3 tries to get it right.
Base model used for fine-tuning was 200k context Yi-34B-Llama model shared by larryvrh.
I had to lower max_positional_embeddings in config.json and model_max_length for training to start, otherwise I was OOMing straight away.
My first attempt had max_positional_embeddings set to 16384 and model_max_length set to 200000. This allowed fine-tuning to finish, but that model was broken after applying LoRA and merging it. \
This attempt had both max_position_embeddings and model_max_length set to 4096, which worked perfectly fine.
## Quants!
Huge thank you to LoneStriker and TheBloke for providing quantized versions.
EXL2 \
3bpw - https://huggingface.co/LoneStriker/Yi-34B-200K-AEZAKMI-v2-3.0bpw-h6-exl2 \
4bpw - https://huggingface.co/LoneStriker/Yi-34B-200K-AEZAKMI-v2-4.0bpw-h6-exl2 \
4.65bpw - https://huggingface.co/adamo1139/Yi-34B-200K-AEZAKMI-v2-exl2-4.65bpw \
5bpw - https://huggingface.co/LoneStriker/Yi-34B-200K-AEZAKMI-v2-5.0bpw-h6-exl2 \
6bpw - https://huggingface.co/LoneStriker/Yi-34B-200K-AEZAKMI-v2-6.0bpw-h6-exl2 \
8bpw - https://huggingface.co/LoneStriker/Yi-34B-200K-AEZAKMI-v2-8.0bpw-h8-exl2
GGUF - https://huggingface.co/TheBloke/Yi-34B-200K-AEZAKMI-v2-GGUF
GPTQ - https://huggingface.co/TheBloke/Yi-34B-200K-AEZAKMI-v2-GPTQ
AWQ - https://huggingface.co/TheBloke/Yi-34B-200K-AEZAKMI-v2-AWQ
## Prompt Format
I recommend using ChatML format, as this was used during fine-tune. \
Here's a prompt format you should use, you can set a different system message, model seems to respect that fine, so it wasn't overfitted.
```
<|im_start|>system
A chat with uncensored assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Intended uses & limitations
Use is limited by Yi license.
## Known Issues
I recommend to set repetition penalty to something around 1.05 to avoid repetition. So far I had good experience running this model with temperature 1.2.
Stories have ChatGPT like paragraph spacing, I will work on this in the future maybe, not a high priority
Unrestricted-ness of the v2 isn't quite something that I am happy with yet, especially using prompt "A chat.". \
With a slightly modifed prompt it works much better, I recommend using "A chat with uncensored assistant.", it's stupid but it helps a lot. \
Base Yi-34B model is contaminated with refusals and this contaminates all models trained on Yi-34B \
My next project is to attempt to de-contaminate base Yi-34B 4K and Yi-34B 200K using DPO with preferred data coming from uncontaminated raw models. I plan to release that dataset openly.
I was made aware of the frequent occurrence of the phrase "sending shivers down a spine" in the generations during RP of v1, so I fixed those samples - it should be better now. \
I can hold up to 24000 ctx with 4.65bpw exl2 version and 8-bit cache - long context should work as good as other models trained on 200k version of Yi-34B \
There is also some issue with handling long system messages for RP, I was planning to investigate it for v2 but I didn't.
## Axolotl training parameters
- bnb_4bit_use_double_quant: true
- is_llama_derived_model: true
- load_in_4bit: true
- adapter: qlora
- sequence_len: 1400
- sample_packing: true
- lora_r: 16
- lora_alpha: 32
- lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- down_proj
- up_proj
- lora_target_linear: true
- pad_to_sequence_len: false
- micro_batch_size: 1
- gradient_accumulation_steps: 1
- num_epochs: 2.4
- optimizer: adamw_bnb_8bit
- lr_scheduler: constant
- learning_rate: 0.00005
- train_on_inputs: false
- group_by_length: false
- bf16: true
- bfloat16: true
- flash_optimum: false
- gradient_checkpointing: true
- flash_attention: true
- seed: 42
## Upcoming
I will probably be working on de-contaminating base Yi-34B model now. \
My second run of AEZAKMI v2 fine-tune was just 0.15 epochs and I really like how natural this model is and how rich is it's vocabulary. I will try to train less to hit the sweetspot. \
I will be uploading LoRA adapter for that second run that was just 0.15 epochs. \
I believe that I might have gotten what I want if I would have stopped training sooner. I don't have checkpoints older than 1500 steps back so I would need to re-run training to get it back.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_adamo1139__Yi-34B-200K-AEZAKMI-v2)
| Metric |Value|
|---------------------------------|----:|
|Avg. |71.00|
|AI2 Reasoning Challenge (25-Shot)|67.92|
|HellaSwag (10-Shot) |85.61|
|MMLU (5-Shot) |75.22|
|TruthfulQA (0-shot) |56.74|
|Winogrande (5-shot) |81.61|
|GSM8k (5-shot) |58.91|
|