jonatasgrosman
commited on
Commit
•
64967ea
1
Parent(s):
c8c756d
first commit
Browse files- README.md +239 -0
- config.json +76 -0
- preprocessor_config.json +8 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- vocab.json +1 -0
README.md
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
datasets:
|
4 |
+
- common_voice
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
- cer
|
8 |
+
tags:
|
9 |
+
- audio
|
10 |
+
- automatic-speech-recognition
|
11 |
+
- speech
|
12 |
+
- xlsr-fine-tuning-week
|
13 |
+
license: apache-2.0
|
14 |
+
model-index:
|
15 |
+
- name: XLSR Wav2Vec2 English by Jonatas Grosman
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Speech Recognition
|
19 |
+
type: automatic-speech-recognition
|
20 |
+
dataset:
|
21 |
+
name: Common Voice en
|
22 |
+
type: common_voice
|
23 |
+
args: en
|
24 |
+
metrics:
|
25 |
+
- name: Test WER
|
26 |
+
type: wer
|
27 |
+
value: 39.59
|
28 |
+
- name: Test CER
|
29 |
+
type: cer
|
30 |
+
value: 18.18
|
31 |
+
---
|
32 |
+
|
33 |
+
# Wav2Vec2-Large-XLSR-53-English
|
34 |
+
|
35 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on English using the [Common Voice](https://huggingface.co/datasets/common_voice).
|
36 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
37 |
+
|
38 |
+
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
|
39 |
+
|
40 |
+
## Usage
|
41 |
+
|
42 |
+
The model can be used directly (without a language model) as follows:
|
43 |
+
|
44 |
+
```python
|
45 |
+
import torch
|
46 |
+
import librosa
|
47 |
+
from datasets import load_dataset
|
48 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
49 |
+
|
50 |
+
LANG_ID = "en"
|
51 |
+
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
|
52 |
+
SAMPLES = 10
|
53 |
+
|
54 |
+
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
|
55 |
+
|
56 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
57 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
58 |
+
|
59 |
+
# Preprocessing the datasets.
|
60 |
+
# We need to read the audio files as arrays
|
61 |
+
def speech_file_to_array_fn(batch):
|
62 |
+
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
63 |
+
batch["speech"] = speech_array
|
64 |
+
batch["sentence"] = batch["sentence"].upper()
|
65 |
+
return batch
|
66 |
+
|
67 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
68 |
+
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
69 |
+
|
70 |
+
with torch.no_grad():
|
71 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
72 |
+
|
73 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
74 |
+
predicted_sentences = processor.batch_decode(predicted_ids)
|
75 |
+
|
76 |
+
for i, predicted_sentence in enumerate(predicted_sentences):
|
77 |
+
print("-" * 100)
|
78 |
+
print("Reference:", test_dataset[i]["sentence"])
|
79 |
+
print("Prediction:", predicted_sentence)
|
80 |
+
```
|
81 |
+
|
82 |
+
| Reference | Prediction |
|
83 |
+
| ------------- | ------------- |
|
84 |
+
| "SHE'LL BE ALL RIGHT." | SHE'LD BE ALL RIGHT |
|
85 |
+
| SIX | SIX |
|
86 |
+
| "ALL'S WELL THAT ENDS WELL." | ALL IS WELL THAT ENDS WELL |
|
87 |
+
| DO YOU MEAN IT? | DO YOU MEAN IT |
|
88 |
+
| THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESSION |
|
89 |
+
| HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOWIS MOCILE ARE GOING TO HANDLE AMBIGUITIES LIKE KU AND KU |
|
90 |
+
| "I GUESS YOU MUST THINK I'M KINDA BATTY." | RISSHON WAS INCAN IN THE BAK TE |
|
91 |
+
| NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING |
|
92 |
+
| SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUISE IS SAUCED FOR THE GONDER |
|
93 |
+
| GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD |
|
94 |
+
|
95 |
+
## Evaluation
|
96 |
+
|
97 |
+
The model can be evaluated as follows on the English test data of Common Voice.
|
98 |
+
|
99 |
+
```python
|
100 |
+
import torch
|
101 |
+
import re
|
102 |
+
import librosa
|
103 |
+
from datasets import load_dataset, load_metric
|
104 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
105 |
+
|
106 |
+
LANG_ID = "en"
|
107 |
+
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
|
108 |
+
DEVICE = "cuda"
|
109 |
+
|
110 |
+
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
|
111 |
+
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
|
112 |
+
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
|
113 |
+
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
|
114 |
+
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]
|
115 |
+
|
116 |
+
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
|
117 |
+
|
118 |
+
# uncomment the following lines to eval using other datasets
|
119 |
+
# test_dataset = load_dataset("librispeech_asr", "clean", split="test")
|
120 |
+
# test_dataset = load_dataset("librispeech_asr", "other", split="test")
|
121 |
+
# test_dataset = load_dataset("timit_asr", split="test")
|
122 |
+
|
123 |
+
wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
|
124 |
+
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py
|
125 |
+
|
126 |
+
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
|
127 |
+
|
128 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
129 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
130 |
+
model.to(DEVICE)
|
131 |
+
|
132 |
+
# Preprocessing the datasets.
|
133 |
+
# We need to read the audio files as arrays
|
134 |
+
def speech_file_to_array_fn(batch):
|
135 |
+
with warnings.catch_warnings():
|
136 |
+
warnings.simplefilter("ignore")
|
137 |
+
speech_array, sampling_rate = librosa.load(batch["file"] if "file" in batch else batch["path"], sr=16_000)
|
138 |
+
batch["speech"] = speech_array
|
139 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["text"] if "text" in batch else batch["sentence"]).upper()
|
140 |
+
return batch
|
141 |
+
|
142 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
143 |
+
|
144 |
+
# Preprocessing the datasets.
|
145 |
+
# We need to read the audio files as arrays
|
146 |
+
def evaluate(batch):
|
147 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
148 |
+
|
149 |
+
with torch.no_grad():
|
150 |
+
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
|
151 |
+
|
152 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
153 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
154 |
+
return batch
|
155 |
+
|
156 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
157 |
+
|
158 |
+
predictions = [x.upper() for x in result["pred_strings"]]
|
159 |
+
references = [x.upper() for x in result["sentence"]]
|
160 |
+
|
161 |
+
print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
|
162 |
+
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
|
163 |
+
```
|
164 |
+
|
165 |
+
**Test Result**:
|
166 |
+
|
167 |
+
In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-20). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.
|
168 |
+
|
169 |
+
---
|
170 |
+
|
171 |
+
**Common Voice**
|
172 |
+
|
173 |
+
| Model | WER | CER |
|
174 |
+
| ------------- | ------------- | ------------- |
|
175 |
+
| jonatasgrosman/wav2vec2-large-xlsr-53-english | **19.18%** | **8.25%** |
|
176 |
+
| jonatasgrosman/wav2vec2-large-english | 21.16% | 9.53% |
|
177 |
+
| facebook/wav2vec2-large-960h-lv60-self | 22.03% | 10.39% |
|
178 |
+
| facebook/wav2vec2-large-960h-lv60 | 23.97% | 11.14% |
|
179 |
+
| facebook/wav2vec2-large-960h | 32.79% | 16.03% |
|
180 |
+
| boris/xlsr-en-punctuation | 34.81% | 15.51% |
|
181 |
+
| facebook/wav2vec2-base-960h | 39.86% | 19.89% |
|
182 |
+
| facebook/wav2vec2-base-100h | 51.06% | 25.06% |
|
183 |
+
| elgeish/wav2vec2-large-lv60-timit-asr | 59.96% | 34.28% |
|
184 |
+
| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 66.41% | 36.76% |
|
185 |
+
| elgeish/wav2vec2-base-timit-asr | 68.78% | 36.81% |
|
186 |
+
|
187 |
+
---
|
188 |
+
|
189 |
+
**LibriSpeech (clean)**
|
190 |
+
|
191 |
+
| Model | WER | CER |
|
192 |
+
| ------------- | ------------- | ------------- |
|
193 |
+
| facebook/wav2vec2-large-960h-lv60-self | **1.86%** | **0.54%** |
|
194 |
+
| facebook/wav2vec2-large-960h-lv60 | 2.15% | 0.61% |
|
195 |
+
| facebook/wav2vec2-large-960h | 2.82% | 0.84% |
|
196 |
+
| facebook/wav2vec2-base-960h | 3.44% | 1.06% |
|
197 |
+
| facebook/wav2vec2-base-100h | 6.26% | 2.00% |
|
198 |
+
| jonatasgrosman/wav2vec2-large-xlsr-53-english | 6.97% | 2.02% |
|
199 |
+
| jonatasgrosman/wav2vec2-large-english | 8.00% | 2.55% |
|
200 |
+
| elgeish/wav2vec2-large-lv60-timit-asr | 15.53% | 4.93% |
|
201 |
+
| boris/xlsr-en-punctuation | 19.28% | 6.45% |
|
202 |
+
| elgeish/wav2vec2-base-timit-asr | 29.19% | 8.38% |
|
203 |
+
| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 31.82% | 12.41% |
|
204 |
+
|
205 |
+
---
|
206 |
+
|
207 |
+
**LibriSpeech (other)**
|
208 |
+
|
209 |
+
| Model | WER | CER |
|
210 |
+
| ------------- | ------------- | ------------- |
|
211 |
+
| facebook/wav2vec2-large-960h-lv60-self | **3.89%** | **1.40%** |
|
212 |
+
| facebook/wav2vec2-large-960h-lv60 | 4.45% | 1.56% |
|
213 |
+
| facebook/wav2vec2-large-960h | 6.49% | 2.52% |
|
214 |
+
| facebook/wav2vec2-base-960h | 8.90% | 3.55% |
|
215 |
+
| jonatasgrosman/wav2vec2-large-xlsr-53-english | 11.75% | 4.23% |
|
216 |
+
| jonatasgrosman/wav2vec2-large-english | 13.62% | 5.24% |
|
217 |
+
| facebook/wav2vec2-base-100h | 13.97% | 5.51% |
|
218 |
+
| boris/xlsr-en-punctuation | 26.40% | 10.11% |
|
219 |
+
| elgeish/wav2vec2-large-lv60-timit-asr | 28.39% | 12.08% |
|
220 |
+
| elgeish/wav2vec2-base-timit-asr | 42.04% | 15.57% |
|
221 |
+
| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 45.19% | 20.32% |
|
222 |
+
|
223 |
+
---
|
224 |
+
|
225 |
+
**TIMIT**
|
226 |
+
|
227 |
+
| Model | WER | CER |
|
228 |
+
| ------------- | ------------- | ------------- |
|
229 |
+
| facebook/wav2vec2-large-960h-lv60-self | **5.17%** | **1.33%** |
|
230 |
+
| facebook/wav2vec2-large-960h-lv60 | 6.24% | 1.54% |
|
231 |
+
| facebook/wav2vec2-large-960h | 9.63% | 2.19% |
|
232 |
+
| facebook/wav2vec2-base-960h | 11.48% | 2.76% |
|
233 |
+
| jonatasgrosman/wav2vec2-large-xlsr-53-english | 11.93% | 3.50% |
|
234 |
+
| elgeish/wav2vec2-large-lv60-timit-asr | 13.83% | 4.36% |
|
235 |
+
| jonatasgrosman/wav2vec2-large-english | 13.91% | 4.01% |
|
236 |
+
| facebook/wav2vec2-base-100h | 16.75% | 4.79% |
|
237 |
+
| elgeish/wav2vec2-base-timit-asr | 25.40% | 8.16% |
|
238 |
+
| boris/xlsr-en-punctuation | 25.93% | 9.99% |
|
239 |
+
| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 51.08% | 19.84% |
|
config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
3 |
+
"activation_dropout": 0.05,
|
4 |
+
"apply_spec_augment": true,
|
5 |
+
"architectures": [
|
6 |
+
"Wav2Vec2ForCTC"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"conv_bias": true,
|
11 |
+
"conv_dim": [
|
12 |
+
512,
|
13 |
+
512,
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512,
|
18 |
+
512
|
19 |
+
],
|
20 |
+
"conv_kernel": [
|
21 |
+
10,
|
22 |
+
3,
|
23 |
+
3,
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
2,
|
27 |
+
2
|
28 |
+
],
|
29 |
+
"conv_stride": [
|
30 |
+
5,
|
31 |
+
2,
|
32 |
+
2,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2
|
37 |
+
],
|
38 |
+
"ctc_loss_reduction": "mean",
|
39 |
+
"ctc_zero_infinity": true,
|
40 |
+
"do_stable_layer_norm": true,
|
41 |
+
"eos_token_id": 2,
|
42 |
+
"feat_extract_activation": "gelu",
|
43 |
+
"feat_extract_dropout": 0.0,
|
44 |
+
"feat_extract_norm": "layer",
|
45 |
+
"feat_proj_dropout": 0.05,
|
46 |
+
"final_dropout": 0.0,
|
47 |
+
"gradient_checkpointing": true,
|
48 |
+
"hidden_act": "gelu",
|
49 |
+
"hidden_dropout": 0.05,
|
50 |
+
"hidden_size": 1024,
|
51 |
+
"initializer_range": 0.02,
|
52 |
+
"intermediate_size": 4096,
|
53 |
+
"layer_norm_eps": 1e-05,
|
54 |
+
"layerdrop": 0.05,
|
55 |
+
"mask_channel_length": 10,
|
56 |
+
"mask_channel_min_space": 1,
|
57 |
+
"mask_channel_other": 0.0,
|
58 |
+
"mask_channel_prob": 0.0,
|
59 |
+
"mask_channel_selection": "static",
|
60 |
+
"mask_feature_length": 10,
|
61 |
+
"mask_feature_prob": 0.0,
|
62 |
+
"mask_time_length": 10,
|
63 |
+
"mask_time_min_space": 1,
|
64 |
+
"mask_time_other": 0.0,
|
65 |
+
"mask_time_prob": 0.05,
|
66 |
+
"mask_time_selection": "static",
|
67 |
+
"model_type": "wav2vec2",
|
68 |
+
"num_attention_heads": 16,
|
69 |
+
"num_conv_pos_embedding_groups": 16,
|
70 |
+
"num_conv_pos_embeddings": 128,
|
71 |
+
"num_feat_extract_layers": 7,
|
72 |
+
"num_hidden_layers": 24,
|
73 |
+
"pad_token_id": 0,
|
74 |
+
"transformers_version": "4.5.0.dev0",
|
75 |
+
"vocab_size": 33
|
76 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_size": 1,
|
4 |
+
"padding_side": "right",
|
5 |
+
"padding_value": 0.0,
|
6 |
+
"return_attention_mask": true,
|
7 |
+
"sampling_rate": 16000
|
8 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ba6ad16f6ecfcadd07ca5bc3353c3168665bee9fbfb160fbc864a6a9f87ca58
|
3 |
+
size 1262069143
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<pad>": 0, "<s>": 1, "</s>": 2, "<unk>": 3, "|": 4, "'": 5, "-": 6, "A": 7, "B": 8, "C": 9, "D": 10, "E": 11, "F": 12, "G": 13, "H": 14, "I": 15, "J": 16, "K": 17, "L": 18, "M": 19, "N": 20, "O": 21, "P": 22, "Q": 23, "R": 24, "S": 25, "T": 26, "U": 27, "V": 28, "W": 29, "X": 30, "Y": 31, "Z": 32}
|