--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6995 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7415 | 1.0 | 113 | 1.8323 | 0.43 | | 1.2237 | 2.0 | 226 | 1.2223 | 0.65 | | 0.8856 | 3.0 | 339 | 0.8612 | 0.71 | | 0.658 | 4.0 | 452 | 0.6679 | 0.8 | | 0.2701 | 5.0 | 565 | 0.5787 | 0.81 | | 0.1232 | 6.0 | 678 | 0.7164 | 0.81 | | 0.0726 | 7.0 | 791 | 0.6973 | 0.84 | | 0.0253 | 8.0 | 904 | 0.6665 | 0.86 | | 0.0939 | 9.0 | 1017 | 0.6756 | 0.87 | | 0.0112 | 10.0 | 1130 | 0.6995 | 0.87 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3