Gpt / mamba_model.py
Zerx966's picture
Upload 10 files
3ef28b3 verified
import logging
from typing import Literal, Optional, Union
import functools
from functools import partial
import torch
import torch.nn as nn
from torch import Tensor
import math
import os
from mamba_block import MambaBlock, MambaDecoder
from mamba_config import MambaConfig
from hf_utils import *
import os, json
from transformers.utils import WEIGHTS_NAME, CONFIG_NAME
from transformers.utils.hub import cached_file
# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
def _init_weights(
module,
n_layer,
initializer_range=0.02, # Now only used for embedding layer.
rescale_prenorm_residual=True,
n_residuals_per_layer=1, # Change to 2 if we have MLP
):
if isinstance(module, nn.Linear):
if module.bias is not None:
if not getattr(module.bias, "_no_reinit", False):
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=initializer_range)
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["out_proj.weight", "fc2.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
with torch.no_grad():
p /= math.sqrt(n_residuals_per_layer * n_layer)
class MambaModel(nn.Module):
def __init__(
self,
config: MambaConfig,
max_sequence_length: int,
pre_process: bool = True,
post_process: bool = True,
fp16_lm_cross_entropy: bool = False,
parallel_output: bool = True,
share_embeddings_and_output_weights: bool = True,
initializer_cfg = None,
) -> None:
super().__init__()
self.config: MambaConfig = config
self.max_sequence_length = max_sequence_length
self.pre_process = pre_process
self.post_process = post_process
self.fp16_lm_cross_entropy = fp16_lm_cross_entropy
self.parallel_output = parallel_output
self.share_embeddings_and_output_weights = share_embeddings_and_output_weights
if self.pre_process:
self.embedding = nn.Embedding(self.config.vocab_size, self.config.hidden_size)
self.decoder = MambaDecoder(
config = self.config,
pre_process = self.pre_process,
post_process = self.post_process,
)
if post_process:
self.output_layer = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias = self.config.add_bias_linear)
if self.share_embeddings_and_output_weights and (self.pre_process or self.post_process):
self.initialize_last_stage_with_word_embeddings()
# apply weight initialization
self.apply(
partial(
_init_weights,
n_layer=self.config.num_layers,
**(initializer_cfg if initializer_cfg is not None else {}),
)
)
def initialize_last_stage_with_word_embeddings(self):
with torch.no_grad():
self.output_layer.weight = self.embedding.weight
def forward(
self,
input_ids,
position_ids = None,
decoder_input: Tensor = None,
labels: Tensor = None,
inference_params=None,
) -> Tensor:
if decoder_input is not None:
pass
elif self.pre_process:
decoder_input = self.embedding(input_ids)
else:
decoder_input = None
hidden_states = self.decoder(
hidden_states=decoder_input,
residual=None,
inference_params=inference_params,
)
if not self.post_process:
return hidden_states
logits = self.output_layer(hidden_states)
return logits.contiguous()
@classmethod
def from_pretrained(cls, pretrained_model_name = None, checkpoint_name=None, config_name=None, **kwargs):
if pretrained_model_name is not None:
json_config = load_config_hf(pretrained_model_name)
loaded = load_state_dict_hf(pretrained_model_name)
elif checkpoint_name is not None and config_name is not None:
with open(config_name, 'r') as f:
jsonstr = f.read()
json_config = json.loads(jsonstr)
loaded = torch.load(checkpoint_name, map_location='cpu')
else:
return
model_state_dict = loaded["model"]
config = MambaConfig(
num_layers=json_config['num_layers'],
hidden_size=json_config['hidden_size'],
state_size=json_config['state_size'],
conv_dimension=json_config['conv_dimension'],
vocab_size=json_config['vocab_size'],
expansion_factor=json_config['expansion_factor'],
mamba_moe_layers=json_config['mamba_moe_layers'],
ffn_hidden_size=json_config['ffn_hidden_size'],
bias = json_config['add_bias_linear'],
add_bias_linear = json_config['add_bias_linear'],
gated_linear_unit = json_config['swiglu']
)
model = MambaModel(config=config, max_sequence_length=json_config['max_sequence_length'], **kwargs)
# make keys match
model_state_dict["embedding.weight"] = model_state_dict["embedding.word_embeddings.weight"].clone()
model_state_dict["output_layer.weight"] = model_state_dict["embedding.word_embeddings.weight"].clone()
model_state_dict["embedding.word_embeddings.weight"] = None
model_state_dict.pop("embedding.word_embeddings.weight")
model.load_state_dict(loaded["model"])
return model
def save_pretrained(self, save_directory):
"""
Minimal implementation of save_pretrained for MambaLMHeadModel.
Save the model and its configuration file to a directory.
"""
# Ensure save_directory exists
if not os.path.exists(save_directory):
os.makedirs(save_directory)
# Save the model's state_dict
model_path = os.path.join(save_directory, 'pytorch_model.bin')
torch.save(self.state_dict(), model_path)
# Save the configuration of the model
config_path = os.path.join(save_directory, 'config.json')
with open(config_path, 'w') as f:
json.dump(self.config.__dict__, f)