Xenova HF staff commited on
Commit
7c922a7
1 Parent(s): 5bd0eef

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -1
README.md CHANGED
@@ -1,4 +1,63 @@
1
  ---
2
  library_name: transformers.js
3
  license: gpl-3.0
4
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers.js
3
  license: gpl-3.0
4
+ pipeline_tag: object-detection
5
+ ---
6
+
7
+ https://github.com/WongKinYiu/yolov9 with ONNX weights to be compatible with Transformers.js.
8
+
9
+
10
+ ## Usage (Transformers.js)
11
+
12
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
13
+ ```bash
14
+ npm i @xenova/transformers
15
+ ```
16
+
17
+ **Example:** Perform object-detection with `Xenova/gelan-e`.
18
+
19
+ ```js
20
+ import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers';
21
+
22
+ // Load model
23
+ const model = await AutoModel.from_pretrained('Xenova/gelan-e', {
24
+ // quantized: false, // (Optional) Use unquantized version.
25
+ })
26
+
27
+ // Load processor
28
+ const processor = await AutoProcessor.from_pretrained('Xenova/gelan-e');
29
+ // processor.feature_extractor.do_resize = false; // (Optional) Disable resizing
30
+ // processor.feature_extractor.size = { width: 128, height: 128 } // (Optional) Update resize value
31
+
32
+ // Read image and run processor
33
+ const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg';
34
+ const image = await RawImage.read(url);
35
+ const { pixel_values } = await processor(image);
36
+
37
+ // Run object detection
38
+ const { outputs } = await model({ images: pixel_values })
39
+ const predictions = outputs.tolist();
40
+
41
+ for (const [xmin, ymin, xmax, ymax, score, id] of predictions) {
42
+ const bbox = [xmin, ymin, xmax, ymax].map(x => x.toFixed(2)).join(', ')
43
+ console.log(`Found "${model.config.id2label[id]}" at [${bbox}] with score ${score.toFixed(2)}.`)
44
+ }
45
+ // Found "car" at [177.60, 337.36, 398.55, 416.89] with score 0.93.
46
+ // Found "car" at [447.15, 378.75, 639.80, 477.55] with score 0.93.
47
+ // Found "bicycle" at [1.58, 518.34, 109.99, 584.37] with score 0.90.
48
+ // Found "person" at [551.19, 261.01, 591.45, 330.76] with score 0.89.
49
+ // Found "bicycle" at [449.09, 477.33, 555.91, 537.40] with score 0.89.
50
+ // Found "bicycle" at [352.70, 528.23, 463.36, 588.13] with score 0.88.
51
+ // Found "traffic light" at [376.77, 65.71, 401.59, 111.02] with score 0.86.
52
+ // Found "traffic light" at [208.46, 55.44, 233.45, 101.43] with score 0.85.
53
+ // ...
54
+ ```
55
+
56
+ ## Demo
57
+
58
+ Test it out [here](https://huggingface.co/spaces/Xenova/yolov9-web)!
59
+
60
+ ---
61
+
62
+
63
+ Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).