joy-caption-pre-alpha / app-multi-alpha.py
Wi-zz's picture
Update app-multi-alpha.py
3bce52e verified
raw
history blame
8.76 kB
import torch
import torch.amp.autocast_mode
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
import os
import sys
import logging
import warnings
import argparse
from PIL import Image
from pathlib import Path
from tqdm import tqdm
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from typing import List, Union
# Constants
CLIP_PATH = "google/siglip-so400m-patch14-384"
VLM_PROMPT = "A descriptive caption for this image:\n"
MODEL_PATH = "unsloth/Meta-Llama-3.1-8B-bnb-4bit"
CHECKPOINT_PATH = Path("wpkklhc6")
IMAGE_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.bmp', '.webp')
warnings.filterwarnings("ignore", category=UserWarning)
logging.getLogger("transformers").setLevel(logging.ERROR)
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
dist.init_process_group("nccl", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
class ImageAdapter(nn.Module):
def __init__(self, input_features: int, output_features: int):
super().__init__()
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
def forward(self, vision_outputs: torch.Tensor):
return self.linear2(self.activation(self.linear1(vision_outputs)))
def load_models(rank):
print(f"Loading CLIP πŸ“Ž on GPU {rank}")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model.eval().requires_grad_(False).to(rank)
print(f"Loading tokenizer πŸͺ™ on GPU {rank}")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
assert isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)), f"Tokenizer is of type {type(tokenizer)}"
print(f"Loading LLM πŸ€– on GPU {rank}")
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map={"": rank}, torch_dtype=torch.bfloat16).eval()
print(f"Loading image adapter πŸ–ΌοΈ on GPU {rank}")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size)
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location=f"cuda:{rank}", weights_only=True))
image_adapter.eval().to(rank)
return clip_processor, clip_model, tokenizer, text_model, image_adapter
@torch.no_grad()
def stream_chat(input_images: List[Image.Image], batch_size: int, pbar: tqdm, models: tuple, rank: int) -> List[str]:
clip_processor, clip_model, tokenizer, text_model, image_adapter = models
torch.cuda.empty_cache()
all_captions = []
for i in range(0, len(input_images), batch_size):
batch = input_images[i:i+batch_size]
try:
images = clip_processor(images=batch, return_tensors='pt', padding=True).pixel_values.to(rank)
except ValueError as e:
print(f"Error processing image batch: {e}")
print("Skipping this batch and continuing...")
continue
with torch.amp.autocast_mode.autocast(device_type='cuda', enabled=True):
vision_outputs = clip_model(pixel_values=images, output_hidden_states=True)
image_features = vision_outputs.hidden_states[-2]
embedded_images = image_adapter(image_features).to(dtype=torch.bfloat16)
prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt')
prompt_embeds = text_model.model.embed_tokens(prompt.to(rank)).to(dtype=torch.bfloat16)
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=rank, dtype=torch.int64)).to(dtype=torch.bfloat16)
inputs_embeds = torch.cat([
embedded_bos.expand(embedded_images.shape[0], -1, -1),
embedded_images,
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
], dim=1).to(dtype=torch.bfloat16)
input_ids = torch.cat([
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long).expand(embedded_images.shape[0], -1),
torch.zeros((embedded_images.shape[0], embedded_images.shape[1]), dtype=torch.long),
prompt.expand(embedded_images.shape[0], -1),
], dim=1).to(rank)
attention_mask = torch.ones_like(input_ids)
generate_ids = text_model.generate(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
max_new_tokens=300,
do_sample=True,
top_k=10,
temperature=0.5,
)
generate_ids = generate_ids[:, input_ids.shape[1]:]
for ids in generate_ids:
caption = tokenizer.decode(ids[:-1] if ids[-1] == tokenizer.eos_token_id else ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
caption = caption.replace('<|end_of_text|>', '').replace('<|finetune_right_pad_id|>', '').strip()
all_captions.append(caption)
if pbar and rank == 0:
pbar.update(len(batch))
return all_captions
def process_directory(rank, world_size, input_dir: Path, output_dir: Path, batch_size: int, models: tuple):
output_dir.mkdir(parents=True, exist_ok=True)
image_files = [f for f in input_dir.iterdir() if f.suffix.lower() in IMAGE_EXTENSIONS]
images_to_process = [f for f in image_files if not (output_dir / f"{f.stem}.txt").exists()]
if not images_to_process:
if rank == 0:
print("No new images to process.")
return
# Distribute images across GPUs
images_per_gpu = len(images_to_process) // world_size
start_idx = rank * images_per_gpu
end_idx = start_idx + images_per_gpu if rank < world_size - 1 else len(images_to_process)
gpu_images = images_to_process[start_idx:end_idx]
if rank == 0:
pbar = tqdm(total=len(images_to_process), desc="Processing images", unit="image")
else:
pbar = None
for i in range(0, len(gpu_images), batch_size):
batch_files = gpu_images[i:i+batch_size]
batch_images = [Image.open(f).convert('RGB') for f in batch_files]
captions = stream_chat(batch_images, batch_size, pbar, models, rank)
for file, caption in zip(batch_files, captions):
with open(output_dir / f"{file.stem}.txt", 'w', encoding='utf-8') as f:
f.write(caption)
for img in batch_images:
img.close()
if rank == 0:
pbar.close()
def parse_arguments():
parser = argparse.ArgumentParser(description="Process images and generate captions.")
parser.add_argument("input", nargs='+', help="Input image file or directory (or multiple directories)")
parser.add_argument("--output", help="Output directory (optional)")
parser.add_argument("--bs", type=int, default=4, help="Batch size (default: 4)")
return parser.parse_args()
def run(rank, world_size, args):
setup(rank, world_size)
input_paths = [Path(input_path) for input_path in args.input]
batch_size = args.bs
models = load_models(rank)
for input_path in input_paths:
if input_path.is_file() and input_path.suffix.lower() in IMAGE_EXTENSIONS:
if rank == 0:
output_path = input_path.with_suffix('.txt')
print(f"Processing single image 🎞️: {input_path.name}")
with tqdm(total=1, desc="Processing image", unit="image") as pbar:
captions = stream_chat([Image.open(input_path).convert('RGB')], 1, pbar, models, rank)
with open(output_path, 'w', encoding='utf-8') as f:
f.write(captions[0])
print(f"Output saved to {output_path}")
elif input_path.is_dir():
output_path = Path(args.output) if args.output else input_path
if rank == 0:
print(f"Processing directory πŸ“: {input_path}")
print(f"Output directory πŸ“¦: {output_path}")
print(f"Batch size πŸ—„οΈ: {batch_size}")
process_directory(rank, world_size, input_path, output_path, batch_size, models)
else:
if rank == 0:
print(f"Invalid input: {input_path}")
print("Skipping...")
cleanup()
def main():
args = parse_arguments()
world_size = torch.cuda.device_count()
if world_size > 1:
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
else:
run(0, 1, args)
if __name__ == "__main__":
main()