File size: 5,353 Bytes
a5f5615
 
ffe72f9
 
 
 
 
af5e13c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffe72f9
 
 
af5e13c
 
 
 
 
 
 
 
 
 
 
 
 
ffe72f9
 
 
af5e13c
 
 
 
 
 
 
 
 
 
 
 
 
 
ffe72f9
 
 
af5e13c
 
 
 
 
 
 
 
 
 
 
 
 
ffe72f9
 
af5e13c
 
 
 
 
 
 
 
 
 
 
 
 
 
ffe72f9
 
 
af5e13c
 
 
 
 
 
 
 
 
 
 
 
 
 
ffe72f9
 
 
a5f5615
91f18df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5f5615
91f18df
 
 
 
 
 
 
 
 
a5f5615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48423c4
e8f510d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48423c4
 
 
 
 
 
 
 
 
 
 
 
e21f570
 
 
 
ffe72f9
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---
license: apache-2.0
tags:
- merge
base_model:
- teknium/OpenHermes-2.5-Mistral-7B
- Intel/neural-chat-7b-v3-3
model-index:
- name: OpenHermes-2.5-neural-chat-v3-3-Slerp
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 68.09
      name: normalized accuracy
    - type: acc_norm
      value: 68.09
      name: normalized accuracy
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.2
      name: normalized accuracy
    - type: acc_norm
      value: 86.2
      name: normalized accuracy
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.26
      name: accuracy
    - type: acc
      value: 64.26
      name: accuracy
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 62.78
    - type: mc2
      value: 62.78
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 79.16
      name: accuracy
    - type: acc
      value: 79.16
      name: accuracy
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 67.78
      name: accuracy
    - type: acc
      value: 67.78
      name: accuracy
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/x44nNbPTpv0zGTqA1Jb2q.png)

# OpenHermes-2.5-neural-chat-v3-3-Slerp

This is the model for OpenHermes-2.5-neural-chat-v3-3-Slerp. I used [mergekit](https://github.com/cg123/mergekit) to merge models.

# Prompt Templates

You can use these prompt templates, but I recommend using ChatML.

### ChatML [(OpenHermes-2.5-Mistral-7B)](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B):

```
<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{user}<|im_end|>
<|im_start|>assistant
{asistant}<|im_end|>
```

### [neural-chat-7b-v3-3](https://huggingface.co/Intel/neural-chat-7b-v3-3):

```
### System:
{system}
### User:
{user}
### Assistant:
```

# Yaml Config to reproduce

```yaml
slices:
  - sources:
      - model: teknium/OpenHermes-2.5-Mistral-7B
        layer_range: [0, 32]
      - model: Intel/neural-chat-7b-v3-3
        layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-v0.1
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5 # fallback for rest of tensors
dtype: bfloat16
```

# Quantizationed versions

Quantizationed versions of this model is available thanks to [TheBloke](https://hf.co/TheBloke).

##### GPTQ

- [TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-GPTQ](https://huggingface.co/TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-GPTQ)

##### GGUF

- [TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-GGUF](https://huggingface.co/TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-GGUF)

##### AWQ

- [TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-AWQ](https://huggingface.co/TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-AWQ)


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)

Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_PulsarAI__OpenHermes-2.5-neural-chat-v3-3-Slerp)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 71.38   |
| ARC (25-shot)         | 68.09          |
| HellaSwag (10-shot)   | 86.2    |
| MMLU (5-shot)         | 64.26         |
| TruthfulQA (0-shot)   | 62.78  |
| Winogrande (5-shot)   | 79.16  |
| GSM8K (5-shot)        | 67.78        |

If you would like to support me:

[☕ Buy Me a Coffee](https://www.buymeacoffee.com/weyaxi)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_PulsarAI__OpenHermes-2.5-neural-chat-v3-3-Slerp)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |71.38|
|AI2 Reasoning Challenge (25-Shot)|68.09|
|HellaSwag (10-Shot)              |86.20|
|MMLU (5-Shot)                    |64.26|
|TruthfulQA (0-shot)              |62.78|
|Winogrande (5-shot)              |79.16|
|GSM8k (5-shot)                   |67.78|