YuanLiuuuuuu
commited on
Commit
•
d6340a9
1
Parent(s):
e862003
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- HuggingFaceM4/MMBench
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- openai/clip-vit-large-patch14-336
|
9 |
+
- Qwen/Qwen2.5-7B-Instruct
|
10 |
+
pipeline_tag: image-text-to-text
|
11 |
+
tags:
|
12 |
+
- vision-language
|
13 |
+
- multimodal
|
14 |
+
---
|
15 |
+
## POINTS-Qwen-2-5-7B-Chat
|
16 |
+
|
17 |
+
### Introduction
|
18 |
+
|
19 |
+
We are excited to announce the first version of POINTS, which integrates recent advancement in vision-language model and new techniques proposed by researchers from WeChat AI.
|
20 |
+
|
21 |
+
<p align="center">
|
22 |
+
🏠 <a href="https://github.com/WePOINTS/WePOINTS">Github</a>   |    📑 <a href="https://arxiv.org/abs/2409.04828">Paper</a>    </a>
|
23 |
+
</p>
|
24 |
+
|
25 |
+
### What's new in POINTS?
|
26 |
+
|
27 |
+
**Key Innovations**
|
28 |
+
|
29 |
+
1. **Strong Baseline**: We integrate the most recent advancement in vision-language model, i.e., CapFusion, Dual Vision Encoder, and
|
30 |
+
Dynamic High Resolution, into POINTS.
|
31 |
+
|
32 |
+
2. **Pre-training Dataset Filtering**: We propose to filter the pre-training dataset using perplexity as a metric. Utilizing this filtering strategy, we can significantly reduce the size of the pre-training dataset and improve the performance of the model.
|
33 |
+
|
34 |
+
3. **Model Soup**: We propose to apply model soup to models, fine-tuned with different visual instruction tuning datasets, which can further significantly improve the performance of the model.
|
35 |
+
|
36 |
+
<p align="center">
|
37 |
+
<img src="https://github.com/user-attachments/assets/6af35008-f501-400a-a870-b66a9bf2baab" width="60%"/>
|
38 |
+
<p>
|
39 |
+
|
40 |
+
|
41 |
+
### How to use POINTS?
|
42 |
+
|
43 |
+
```python
|
44 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
45 |
+
from transformers import CLIPImageProcessor
|
46 |
+
from PIL import Image
|
47 |
+
import torch
|
48 |
+
import requests
|
49 |
+
from io import BytesIO
|
50 |
+
|
51 |
+
|
52 |
+
image_url = 'https://github.com/user-attachments/assets/83258e94-5d61-48ef-a87f-80dd9d895524'
|
53 |
+
response = requests.get(image_url)
|
54 |
+
image_data = BytesIO(response.content)
|
55 |
+
pil_image = Image.open(image_data)
|
56 |
+
prompt = 'please describe the image in detail'
|
57 |
+
model_path = 'WePOINTS/POINTS-Qwen-2-5-7B-Chat'
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
59 |
+
model = AutoModelForCausalLM.from_pretrained(
|
60 |
+
model_path, trust_remote_code=True, device_map='cuda').to(torch.bfloat16)
|
61 |
+
image_processor = CLIPImageProcessor.from_pretrained(model_path)
|
62 |
+
generation_config = {
|
63 |
+
'max_new_tokens': 1024,
|
64 |
+
'temperature': 0.0,
|
65 |
+
'top_p': 0.0,
|
66 |
+
'num_beams': 1,
|
67 |
+
}
|
68 |
+
res = model.chat(
|
69 |
+
pil_image,
|
70 |
+
prompt,
|
71 |
+
tokenizer,
|
72 |
+
image_processor,
|
73 |
+
True,
|
74 |
+
generation_config
|
75 |
+
)
|
76 |
+
print(res)
|
77 |
+
```
|
78 |
+
|
79 |
+
### Evaluation
|
80 |
+
|
81 |
+
| Benchmark | InternVL2-8B | LLaVA-OneVision | POINTS |
|
82 |
+
| :-------: | :----------: | :-------------: | :----: |
|
83 |
+
| MMBench-dev-en | - | 80.8 | 83.2 |
|
84 |
+
| MathVista | 58.3 | 62.3 | 63.1 |
|
85 |
+
| HallucinationBench | 45.0 | 31.6 | 46.0 |
|
86 |
+
| OCRBench | 79.4 | 62.2 | 72.0 |
|
87 |
+
| AI2D | 83.6 | 82.4 | 80.9 |
|
88 |
+
| MMVet | 54.3 | 51.9 | 52.3 |
|
89 |
+
| MMStar | 61.5 | 61.9 | 61.0 |
|
90 |
+
| MMMU | 51.2 | 47.9 | 49.4 |
|
91 |
+
| ScienceQA | 97.1 | 95.4 | - |
|
92 |
+
| MME | 2215.1 | 1993.6 | 2195.2 |
|
93 |
+
| RealWorldQA | 64.2 | 69.9 | 67.3 |
|
94 |
+
| LLaVA-Wild | 73.3 | 81.0 | 71.1 |
|
95 |
+
|
96 |
+
|
97 |
+
### Citation
|
98 |
+
|
99 |
+
If you find our work helpful, feel free to cite us:
|
100 |
+
|
101 |
+
```
|
102 |
+
@article{liu2024points,
|
103 |
+
title={POINTS: Improving Your Vision-language Model with Affordable Strategies},
|
104 |
+
author={Liu, Yuan and Zhao, Zhongyin and Zhuang, Ziyuan and Tian, Le and Zhou, Xiao and Zhou, Jie},
|
105 |
+
journal={arXiv preprint arXiv:2409.04828},
|
106 |
+
year={2024}
|
107 |
+
}
|
108 |
+
|
109 |
+
@article{liu2024rethinking,
|
110 |
+
title={Rethinking Overlooked Aspects in Vision-Language Models},
|
111 |
+
author={Liu, Yuan and Tian, Le and Zhou, Xiao and Zhou, Jie},
|
112 |
+
journal={arXiv preprint arXiv:2405.11850},
|
113 |
+
year={2024}
|
114 |
+
}
|
115 |
+
```
|