Update README.md
Browse files
README.md
CHANGED
@@ -15,11 +15,11 @@ library_name: transformers
|
|
15 |
|
16 |
<div id="top" align="center">
|
17 |
|
18 |
-
|
19 |
|
20 |
|
21 |
<h4> |<a href="https://arxiv.org/abs/2401.10491"> π Paper </a> |
|
22 |
-
<a href="https://huggingface.co/
|
23 |
<a href="https://github.com/fanqiwan/FuseLLM"> π± Github Repo </a> |
|
24 |
</h4>
|
25 |
|
@@ -38,8 +38,7 @@ _<sup>β </sup> Sun Yat-sen University,
|
|
38 |
|
39 |
|
40 |
## News
|
41 |
-
- **Jan
|
42 |
-
- **Jan 22, 2024:** π₯ We're excited to announce that the FuseLLM-7B, which is the fusion of [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b-hf), [OpenLLaMA-7B](https://huggingface.co/openlm-research/open_llama_7b_v2), and [MPT-7B](https://huggingface.co/mosaicml/mpt-7b), is now available on π€ [Huggingface Models](https://huggingface.co/Wanfq/FuseLLM-7B). Happy exploring!
|
43 |
|
44 |
|
45 |
## WIP
|
@@ -59,7 +58,6 @@ _<sup>β </sup> Sun Yat-sen University,
|
|
59 |
- [Training](#training)
|
60 |
- [Evaluation](#evaluation)
|
61 |
- [Citation](#citation)
|
62 |
-
- [Acknowledgements](#acknowledgments)
|
63 |
|
64 |
## Overview
|
65 |
|
@@ -134,9 +132,9 @@ pip install -r requirements.txt
|
|
134 |
### Usage
|
135 |
|
136 |
```python
|
137 |
-
from transformers import AutoTokenizer,
|
138 |
tokenizer = AutoTokenizer.from_pretrained("Wanfq/FuseLLM-7B", use_fast=False)
|
139 |
-
model =
|
140 |
model.cuda()
|
141 |
inputs = tokenizer("<your text here>", return_tensors="pt").to(model.device)
|
142 |
tokens = model.generate(
|
@@ -351,16 +349,11 @@ The evaluation code we used in our evaluation are list as follows:
|
|
351 |
|
352 |
If you find this work is relevant with your research or applications, please feel free to cite our work!
|
353 |
```
|
354 |
-
@
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
primaryClass={cs.CL}
|
361 |
}
|
362 |
-
```
|
363 |
-
|
364 |
-
## Acknowledgments
|
365 |
-
|
366 |
-
This repo benefits from [Stanford-Alpaca](https://github.com/tatsu-lab/stanford_alpaca) and [Explore-Instruct](https://github.com/fanqiwan/Explore-Instruct). Thanks for their wonderful works!
|
|
|
15 |
|
16 |
<div id="top" align="center">
|
17 |
|
18 |
+
<p style="font-size: 36px; font-weight: bold;">Knowledge Fusion of Large Language Models</p>
|
19 |
|
20 |
|
21 |
<h4> |<a href="https://arxiv.org/abs/2401.10491"> π Paper </a> |
|
22 |
+
<a href="https://huggingface.co/FuseAI"> π€ Huggingface Repo </a> |
|
23 |
<a href="https://github.com/fanqiwan/FuseLLM"> π± Github Repo </a> |
|
24 |
</h4>
|
25 |
|
|
|
38 |
|
39 |
|
40 |
## News
|
41 |
+
- **Jan 22, 2024:** π₯ We release [FuseLLM-7B](https://huggingface.co/Wanfq/FuseLLM-7B), which is the fusion of three open-source foundation LLMs with distinct architectures, including [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b-hf), [OpenLLaMA-7B](https://huggingface.co/openlm-research/open_llama_7b_v2), and [MPT-7B](https://huggingface.co/mosaicml/mpt-7b).
|
|
|
42 |
|
43 |
|
44 |
## WIP
|
|
|
58 |
- [Training](#training)
|
59 |
- [Evaluation](#evaluation)
|
60 |
- [Citation](#citation)
|
|
|
61 |
|
62 |
## Overview
|
63 |
|
|
|
132 |
### Usage
|
133 |
|
134 |
```python
|
135 |
+
from transformers import AutoTokenizer, AutoModel
|
136 |
tokenizer = AutoTokenizer.from_pretrained("Wanfq/FuseLLM-7B", use_fast=False)
|
137 |
+
model = AutoModel.from_pretrained("Wanfq/FuseLLM-7B", torch_dtype="auto")
|
138 |
model.cuda()
|
139 |
inputs = tokenizer("<your text here>", return_tensors="pt").to(model.device)
|
140 |
tokens = model.generate(
|
|
|
349 |
|
350 |
If you find this work is relevant with your research or applications, please feel free to cite our work!
|
351 |
```
|
352 |
+
@inproceedings{wan2024knowledge,
|
353 |
+
title={Knowledge Fusion of Large Language Models},
|
354 |
+
author={Fanqi Wan and Xinting Huang and Deng Cai and Xiaojun Quan and Wei Bi and Shuming Shi},
|
355 |
+
booktitle={The Twelfth International Conference on Learning Representations},
|
356 |
+
year={2024},
|
357 |
+
url={https://openreview.net/pdf?id=jiDsk12qcz}
|
|
|
358 |
}
|
359 |
+
```
|
|
|
|
|
|
|
|