--- license: mit library_name: peft tags: - generated_from_trainer base_model: roberta-large metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-token-classification results: [] --- # bert-large-token-classification This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2157 - Precision: 0.4271 - Recall: 0.5155 - F1: 0.4671 - Accuracy: 0.9481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3642 | 1.0 | 741 | 0.2888 | 0.2211 | 0.2315 | 0.2262 | 0.9264 | | 0.2508 | 2.0 | 1482 | 0.2862 | 0.3301 | 0.3645 | 0.3465 | 0.9217 | | 0.1609 | 3.0 | 2223 | 0.2247 | 0.3109 | 0.4309 | 0.3612 | 0.9411 | | 0.1404 | 4.0 | 2964 | 0.2391 | 0.3563 | 0.4669 | 0.4042 | 0.9303 | | 0.0937 | 5.0 | 3705 | 0.2157 | 0.4271 | 0.5155 | 0.4671 | 0.9481 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1