|
""" |
|
Fine-Tune SantaCoder on code/text dataset |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import os |
|
import random |
|
import sys |
|
|
|
import numpy as np |
|
import torch |
|
from datasets import load_dataset |
|
from torch.utils.data import IterableDataset |
|
from torch.utils.data.dataloader import DataLoader |
|
from tqdm import tqdm |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
Trainer, |
|
TrainingArguments, |
|
logging, |
|
set_seed, |
|
) |
|
|
|
|
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--resume_from_checkpoint", type=str, default=None) |
|
parser.add_argument("--model_path", type=str, default="bigcode/santacoder") |
|
parser.add_argument("--dataset_name", type=str, default="bigcode/the-stack-dedup") |
|
parser.add_argument("--subset", type=str, default=None) |
|
parser.add_argument("--split", type=str, default="train") |
|
parser.add_argument("--size_valid_set", type=int, default=4000) |
|
parser.add_argument("--streaming", action="store_true") |
|
parser.add_argument("--shuffle_buffer", type=int, default=5000) |
|
parser.add_argument("--data_column", type=str, default="content") |
|
|
|
parser.add_argument("--seq_length", type=int, default=1024) |
|
parser.add_argument("--max_steps", type=int, default=10000) |
|
parser.add_argument("--batch_size", type=int, default=2) |
|
parser.add_argument("--gradient_accumulation_steps", type=int, default=8) |
|
parser.add_argument("--eos_token_id", type=int, default=49152) |
|
|
|
parser.add_argument("--learning_rate", type=float, default=5e-5) |
|
parser.add_argument("--lr_scheduler_type", type=str, default="cosine") |
|
parser.add_argument("--num_warmup_steps", type=int, default=100) |
|
parser.add_argument("--weight_decay", type=float, default=0.05) |
|
|
|
parser.add_argument("--local_rank", type=int, default=0) |
|
parser.add_argument("--no_fp16", action="store_false") |
|
parser.add_argument("--bf16", action="store_true") |
|
parser.add_argument("--no_gradient_checkpointing", action="store_false") |
|
parser.add_argument("--seed", type=int, default=0) |
|
parser.add_argument("--num_workers", type=int, default=None) |
|
parser.add_argument("--output_dir", type=str, default="./checkpoints") |
|
parser.add_argument("--log_freq", default=1, type=int) |
|
parser.add_argument("--eval_freq", default=1000, type=int) |
|
parser.add_argument("--save_freq", default=1000, type=int) |
|
|
|
|
|
|
|
return parser.parse_args() |
|
|
|
|
|
def chars_token_ratio(dataset, tokenizer, data_column, nb_examples=400): |
|
""" |
|
Estimate the average number of characters per token in the dataset. |
|
""" |
|
total_characters, total_tokens = 0, 0 |
|
for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples): |
|
total_characters += len(example[data_column]) |
|
total_tokens += len(tokenizer(example[data_column]).tokens()) |
|
|
|
return total_characters / total_tokens |
|
|
|
|
|
class ConstantLengthDataset(IterableDataset): |
|
""" |
|
Iterable dataset that returns constant length chunks of tokens from stream of text files. |
|
Args: |
|
tokenizer (Tokenizer): The processor used for proccessing the data. |
|
dataset (dataset.Dataset): Dataset with text files. |
|
infinite (bool): If True the iterator is reset after dataset reaches end else stops. |
|
seq_length (int): Length of token sequences to return. |
|
num_of_sequences (int): Number of token sequences to keep in buffer. |
|
chars_per_token (int): Number of characters per token used to estimate number of tokens in text buffer. |
|
# fim_rate (float): Rate (0.0 to 1.0) that sample will be permuted with FIM. |
|
# fim_spm_rate (float): Rate (0.0 to 1.0) of FIM permuations that will use SPM. |
|
seed (int): Seed for random number generator. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
tokenizer, |
|
dataset, |
|
infinite=False, |
|
seq_length=1024, |
|
num_of_sequences=1024, |
|
chars_per_token=3.6, |
|
content_field="content", |
|
|
|
|
|
seed=0, |
|
): |
|
self.tokenizer = tokenizer |
|
self.concat_token_id = ( |
|
tokenizer.eos_token_id if tokenizer.eos_token_id else args.eos_token_id |
|
) |
|
self.dataset = dataset |
|
self.seq_length = seq_length |
|
self.infinite = infinite |
|
self.current_size = 0 |
|
self.max_buffer_size = seq_length * chars_per_token * num_of_sequences |
|
self.content_field = content_field |
|
|
|
|
|
self.seed = seed |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __iter__(self): |
|
iterator = iter(self.dataset) |
|
more_examples = True |
|
while more_examples: |
|
buffer, buffer_len = [], 0 |
|
while True: |
|
if buffer_len >= self.max_buffer_size: |
|
break |
|
try: |
|
buffer.append(next(iterator)[self.content_field]) |
|
buffer_len += len(buffer[-1]) |
|
except StopIteration: |
|
if self.infinite: |
|
iterator = iter(self.dataset) |
|
else: |
|
more_examples = False |
|
break |
|
tokenized_inputs = self.tokenizer(buffer, truncation=False)["input_ids"] |
|
all_token_ids = [] |
|
|
|
np_rng = np.random.RandomState(seed=self.seed) |
|
for tokenized_input in tokenized_inputs: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all_token_ids.extend(tokenized_input + [self.concat_token_id]) |
|
examples = [] |
|
for i in range(0, len(all_token_ids), self.seq_length): |
|
input_ids = all_token_ids[i : i + self.seq_length] |
|
if len(input_ids) == self.seq_length: |
|
examples.append(input_ids) |
|
random.shuffle(examples) |
|
for example in examples: |
|
self.current_size += 1 |
|
yield { |
|
"input_ids": torch.LongTensor(example), |
|
"labels": torch.LongTensor(example), |
|
} |
|
|
|
def create_datasets(tokenizer, args): |
|
dataset = load_dataset( |
|
args.dataset_name, |
|
data_dir=args.subset, |
|
split=args.split, |
|
use_auth_token=True, |
|
num_proc=args.num_workers if not args.streaming else None, |
|
streaming=args.streaming, |
|
) |
|
if args.streaming: |
|
print("Loading the dataset in streaming mode") |
|
valid_data = dataset.take(args.size_valid_set) |
|
train_data = dataset.skip(args.size_valid_set) |
|
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=args.seed) |
|
else: |
|
dataset = dataset.train_test_split(test_size=0.005, seed=args.seed) |
|
train_data = dataset["train"] |
|
valid_data = dataset["test"] |
|
print( |
|
f"Size of the train set: {len(train_data)}. Size of the validation set: {len(valid_data)}" |
|
) |
|
chars_per_token = chars_token_ratio(train_data, tokenizer, args.data_column) |
|
print(f"The character to token ratio of the dataset is: {chars_per_token:.2f}") |
|
train_dataset = ConstantLengthDataset( |
|
tokenizer, |
|
train_data, |
|
infinite=True, |
|
seq_length=args.seq_length, |
|
chars_per_token=chars_per_token, |
|
content_field=args.data_column, |
|
|
|
|
|
seed=args.seed, |
|
) |
|
valid_dataset = ConstantLengthDataset( |
|
tokenizer, |
|
valid_data, |
|
infinite=False, |
|
seq_length=args.seq_length, |
|
chars_per_token=chars_per_token, |
|
content_field=args.data_column, |
|
|
|
|
|
seed=args.seed, |
|
) |
|
|
|
return train_dataset, valid_dataset |
|
|
|
|
|
def run_training(args, train_data, val_data): |
|
print("Loading the model") |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
args.model_path, |
|
trust_remote_code=True, |
|
use_cache=not args.no_gradient_checkpointing, |
|
) |
|
train_data.start_iteration = 0 |
|
|
|
print(f"Starting main loop") |
|
|
|
training_args = TrainingArguments( |
|
output_dir=args.output_dir, |
|
dataloader_drop_last=True, |
|
evaluation_strategy="steps", |
|
max_steps=args.max_steps, |
|
eval_steps=args.eval_freq, |
|
save_steps=args.save_freq, |
|
logging_steps=args.log_freq, |
|
per_device_train_batch_size=args.batch_size, |
|
per_device_eval_batch_size=args.batch_size, |
|
learning_rate=args.learning_rate, |
|
lr_scheduler_type=args.lr_scheduler_type, |
|
warmup_steps=args.num_warmup_steps, |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
gradient_checkpointing=args.no_gradient_checkpointing, |
|
fp16=args.no_fp16, |
|
bf16=args.bf16, |
|
weight_decay=args.weight_decay, |
|
run_name=f"santacoder-{args.subset}", |
|
|
|
) |
|
|
|
trainer = Trainer( |
|
model=model, args=training_args, train_dataset=train_data, eval_dataset=val_data |
|
) |
|
|
|
print("Training...") |
|
trainer.train(args.resume_from_checkpoint) |
|
|
|
print("Saving last checkpoint of the model") |
|
model.save_pretrained(os.path.join(args.output_dir, "final_checkpoint/")) |
|
|
|
|
|
def main(args): |
|
tokenizer = AutoTokenizer.from_pretrained(args.model_path, use_auth_token=True) |
|
|
|
train_dataset, eval_dataset = create_datasets(tokenizer, args) |
|
|
|
run_training(args, train_dataset, eval_dataset) |
|
|
|
|
|
if __name__ == "__main__": |
|
print(sys.argv) |
|
args = get_args() |
|
print(args) |
|
set_seed(args.seed) |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
logging.set_verbosity_info() |
|
|
|
main(args) |
|
|