Uploaded PPO-MLP trained agent
Browse files- README.md +35 -1
- config.json +1 -0
- lunar-lander-mlp.zip +3 -0
- lunar-lander-mlp/_stable_baselines3_version +1 -0
- lunar-lander-mlp/data +99 -0
- lunar-lander-mlp/policy.optimizer.pth +3 -0
- lunar-lander-mlp/policy.pth +3 -0
- lunar-lander-mlp/pytorch_variables.pth +3 -0
- lunar-lander-mlp/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 271.16 +/- 18.15
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7817b36676d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7817b3667760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7817b36677f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7817b3667880>", "_build": "<function ActorCriticPolicy._build at 0x7817b3667910>", "forward": "<function ActorCriticPolicy.forward at 0x7817b36679a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7817b3667a30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7817b3667ac0>", "_predict": "<function ActorCriticPolicy._predict at 0x7817b3667b50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7817b3667be0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7817b3667c70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7817b3667d00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7817b360e640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1359872, "_total_timesteps": 1350000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693563145099058494, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaWwb0ANrA/o6vGvp6JuL5v96S9Bf4WvgAAAAAAAAAAZq5YO9pinD979Ws9jUr5vsth1DqlOMA8AAAAAAAAAABmzhs7Pc1cu9Zz37pUr8o8r1ncPMjIqr0AAIA/AACAPwBbGb1cs3C6xfp+tU53lrB+5KY6p028NAAAgD8AAIA/mjSNvbkxrT85EgW/xRu5vvEBQb3pVpC+AAAAAAAAAABzoMu9MCD9PkCsEj1xkKW+t9p9vWNfXD0AAAAAAAAAADOacj2PcnC63T3auaKBZLRqZ4M7yqv6OAAAgD8AAIA/ZthVvCmAfrpH94A1ZXLLMP8lQjtu2ru0AACAPwAAgD9AwPI9z5o8PzO30LwUA8a+hiGwPa1U/b0AAAAAAAAAAPPhjr0BFck9AiLiPWJXNb7H0Yo7QJz3vAAAAAAAAAAAjZKwvYKQij7VFTQ9ka+Pvg5/J73+NqM9AAAAAAAAAADNXdi8bmDVvDmGrj0XruS9f60PPeMJlz0AAIA/AACAPzN+qryP9n+6TjOsPPCPbrzgbaY6PlRAvQAAgD8AAIA/0/x8PkpK2D6aA5e+o+qFvlzjAj4N2UC+AAAAAAAAAAAA0iQ9TRUTPp5LCr7GsHW+8Bi1vTacND0AAAAAAAAAAE20HT3DIVO6onmhM0ua6q5T1JS73TvJswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007312592592592537, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMBZKe05U+MAWyUTTABjAF0lEdAl39PLX+VDHV9lChoBkdAcFmV/MGHHmgHS/xoCEdAl4BFhPTG53V9lChoBkdAc7/rcTJyQ2gHTRQBaAhHQJeAbqeK8+R1fZQoaAZHQHCii6UaAFxoB00KAWgIR0CXgN8hs67vdX2UKGgGR0Bw7b5O8CgcaAdNOAFoCEdAl4H3MUypJnV9lChoBkdAcbJTbnHNo2gHTQcBaAhHQJeCMK7ZnL91fZQoaAZHQHHKQ5myxA1oB00lAWgIR0CXgrnNPgvUdX2UKGgGR0Bw+YY+B6KMaAdNCQFoCEdAl4LxQrMC93V9lChoBkdAclzzND+irWgHTREBaAhHQJeDLBKtga51fZQoaAZHQHCLPyCnP3VoB0v8aAhHQJeDd5WzWwx1fZQoaAZHQGz0AGB4D9xoB0vvaAhHQJeDgB1cMVl1fZQoaAZHQHDhm9g4OtpoB00FAWgIR0CXg/k8RtgsdX2UKGgGR0BTeR9Cu2ZzaAdL2GgIR0CXhNMJx//edX2UKGgGR0Bv//vWpZOjaAdNRwFoCEdAl4WSu+yquXV9lChoBkdAcRrPCEYfn2gHTQoBaAhHQJeGDbtZ3cJ1fZQoaAZHQHIGCAMDwH9oB00BAWgIR0CXhlEU0vXcdX2UKGgGR0Bx8fK5kK/maAdNGQFoCEdAl4gJk5IYnHV9lChoBkdAb3FepGWldmgHTQkBaAhHQJeIM+fRNRF1fZQoaAZHQHDU8fvF3pxoB00iAWgIR0CXiHkyULUkdX2UKGgGR0BxourcTJyRaAdL+mgIR0CXiQFpwjt5dX2UKGgGR0BvwFdxAB1caAdL+GgIR0CXiSsJIDoydX2UKGgGR0BtSNhw2l2vaAdL+2gIR0CXifoQWepXdX2UKGgGR0Bx5rFZPl+3aAdL7GgIR0CXih3ta6jGdX2UKGgGR0BxTsiFCb+caAdNDwFoCEdAl4pXXmNipnV9lChoBkdAc0WRLsa86GgHTT8CaAhHQJeKfPE87p51fZQoaAZHQHLoZPRArx1oB00SAWgIR0CXis/o7muDdX2UKGgGR0BxbRnOB19waAdNEwFoCEdAl4sh8twrD3V9lChoBkdAbvJxrBTGYWgHTREBaAhHQJeMWTQmeDp1fZQoaAZHQHEmPovBacJoB0v8aAhHQJeMgldC3PR1fZQoaAZHQHNK7NbC79RoB01CAWgIR0CXjMvpQk5ZdX2UKGgGR0BxG/VOKwY+aAdNHgFoCEdAl44QavRqoXV9lChoBkdAcUxWznied2gHS+loCEdAl46snRb8nHV9lChoBkdAcquMYdhiLGgHS/doCEdAl4++3QUpNXV9lChoBkdAci1OhkAggWgHTQkBaAhHQJeQHm3fAKx1fZQoaAZHQG2PsVDa4+doB0v4aAhHQJeQYuEmICV1fZQoaAZHQHNfvJeVs1toB01WAWgIR0CXkIYzBRAKdX2UKGgGR0Bxv14keIVNaAdL+2gIR0CXkLNZ/0/XdX2UKGgGR0BxoTSBshxHaAdL9mgIR0CXkb1dxAB1dX2UKGgGR0BupSE12q1gaAdNAwFoCEdAl5IGa6STyXV9lChoBkdAcZ+O9WZJCmgHS+hoCEdAl5IwJ1JUYXV9lChoBkdAcf31ivxH5WgHTQcBaAhHQJeSl0IToMd1fZQoaAZHQHADp8KG+K1oB00yAWgIR0CXqQoZhrnDdX2UKGgGR0ByLT5ckdFOaAdNKgFoCEdAl6mOkgwGnnV9lChoBkdAcFLgHNX5nGgHS/ZoCEdAl6n08vEjxHV9lChoBkdAbvhDTBqKxmgHTRMBaAhHQJeqSzZ6D5F1fZQoaAZHQHCMtga3qiZoB0vxaAhHQJereorFwUB1fZQoaAZHQG5tpobn5i5oB00hAWgIR0CXrHGgBcRldX2UKGgGR0BwIw+xGDtgaAdNBAFoCEdAl6zrJ4jbBXV9lChoBkdAb5y25QP7N2gHS+9oCEdAl60NrGipN3V9lChoBkdAcD77MgU1ymgHTQUBaAhHQJetdZQpF1B1fZQoaAZHQHDescyWRihoB00XAWgIR0CXrctbs4T9dX2UKGgGR0Btuf9vS+g2aAdNDgFoCEdAl63drXUYsXV9lChoBkdAcDMs8gZCOWgHTQYBaAhHQJeuuxRl6JJ1fZQoaAZHQG7TCROk+HJoB00WAWgIR0CXrvFev6j4dX2UKGgGR0BxpGcBltj1aAdNAQFoCEdAl68O0CzTnnV9lChoBkdAcMGDdxhlUmgHTS4BaAhHQJev70xubZx1fZQoaAZHQHHdJRKpT/BoB0vxaAhHQJev7ZAY51h1fZQoaAZHQHIUFEAo5PxoB0vwaAhHQJewszJp35h1fZQoaAZHQHFOKaoddVxoB0vtaAhHQJew83EQ5FR1fZQoaAZHQHI9tLlFMIxoB00KAWgIR0CXsP/0dzXCdX2UKGgGR0By25OIqLCOaAdL5WgIR0CXsbyDZlFudX2UKGgGR0Bx3+rS3LFGaAdL82gIR0CXs1iSq2jPdX2UKGgGR0BzHD642CNCaAdL+mgIR0CXs61CPZIydX2UKGgGR0BxwYRZlnRLaAdL7WgIR0CXtA2OAAhjdX2UKGgGR0BxuF9PUKAsaAdNJgFoCEdAl7RU8ifQKXV9lChoBkdAch3B1s+FDmgHTRoBaAhHQJe06W1MM7V1fZQoaAZHQHG5NUXHim5oB00QAWgIR0CXtOmVJL/TdX2UKGgGR0Bw6a2d/axpaAdL92gIR0CXtmCuloDgdX2UKGgGR0BvfeqHXVbzaAdN1gJoCEdAl7bBuXNTtXV9lChoBkdAcIAjrzGxU2gHTQcBaAhHQJe2zbCaZx91fZQoaAZHQHKaG+oLofVoB002AWgIR0CXtwpXZGrkdX2UKGgGR0Bv3N3Y+Sr6aAdNNQFoCEdAl7cgEt/WlXV9lChoBkdAcYqsFMZgomgHS/ZoCEdAl7coJ7b+LnV9lChoBkdAcaeNKh+OO2gHS+toCEdAl7co6r/823V9lChoBkdAc1CF23azvGgHTVgBaAhHQJe3oELYwqR1fZQoaAZHQHLB1IZqEe1oB00VAWgIR0CXuArHlwLmdX2UKGgGR0BxMMnLJSzgaAdNAgFoCEdAl7hakAPuonV9lChoBkdAbXViay8jA2gHTQIBaAhHQJe52Il+mWN1fZQoaAZHQHAld4A0bcZoB0vtaAhHQJe6Po2XLNh1fZQoaAZHQHAoK0Y0l7doB00QAWgIR0CXuoeWv8qGdX2UKGgGR0BxNqMefZmJaAdL6mgIR0CXurgLZzxPdX2UKGgGR0Bw+jOY6XByaAdL6mgIR0CXvEOxjawmdX2UKGgGR0BxixoUSIxhaAdNBwFoCEdAl73ThcZ9/nV9lChoBkdAcJZb2Dg62mgHTQ0BaAhHQJe9+xQizLR1fZQoaAZHQHK5iQo1DShoB010AWgIR0CXvgnYQJ5WdX2UKGgGR0BzEJ1JUYKqaAdNWgFoCEdAl746Dwpe/3V9lChoBkdAbUeRvm5lOGgHTQYBaAhHQJe+RlsguAZ1fZQoaAZHQHGc8yvcJt1oB00XAWgIR0CXvsz1schldX2UKGgGR0BvHFktmL9/aAdNBAFoCEdAl77e2qkuYnV9lChoBkdAcqPAavRqoWgHTSABaAhHQJe/A4S6DoR1fZQoaAZHQG6q3jMmnfloB00DAWgIR0CXv11cdHUddX2UKGgGR0BsdRDst03gaAdL+GgIR0CXv3DUExIrdX2UKGgGR0BwjtYA80UHaAdNPQFoCEdAl7+pjc2zfXV9lChoBkdAb2Qzru6VdGgHTQEBaAhHQJfBD7wazeJ1fZQoaAZHQHMUkOd5IH1oB00IAWgIR0CXwdabnX/YdX2UKGgGR0BxlI+UyHmBaAdNCgFoCEdAl8IeqvNeMXV9lChoBkdAb6OrI5o4/GgHTTEBaAhHQJfCpoexOcl1fZQoaAZHQHGhKkM1CPZoB0vgaAhHQJfEHdDYywh1fZQoaAZHQHCvlkhA4XJoB0vmaAhHQJfEHTqjaf11fZQoaAZHQG/2n5zo2XNoB0vyaAhHQJfEbgtOEdx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 332, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
lunar-lander-mlp.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3a9b0f56f90f839dcac96c90a7b2c76e0d5fd555daf3df7af8118e25609eb6a
|
3 |
+
size 146710
|
lunar-lander-mlp/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
lunar-lander-mlp/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7817b36676d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7817b3667760>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7817b36677f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7817b3667880>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7817b3667910>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7817b36679a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7817b3667a30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7817b3667ac0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7817b3667b50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7817b3667be0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7817b3667c70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7817b3667d00>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7817b360e640>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1359872,
|
25 |
+
"_total_timesteps": 1350000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1693563145099058494,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaWwb0ANrA/o6vGvp6JuL5v96S9Bf4WvgAAAAAAAAAAZq5YO9pinD979Ws9jUr5vsth1DqlOMA8AAAAAAAAAABmzhs7Pc1cu9Zz37pUr8o8r1ncPMjIqr0AAIA/AACAPwBbGb1cs3C6xfp+tU53lrB+5KY6p028NAAAgD8AAIA/mjSNvbkxrT85EgW/xRu5vvEBQb3pVpC+AAAAAAAAAABzoMu9MCD9PkCsEj1xkKW+t9p9vWNfXD0AAAAAAAAAADOacj2PcnC63T3auaKBZLRqZ4M7yqv6OAAAgD8AAIA/ZthVvCmAfrpH94A1ZXLLMP8lQjtu2ru0AACAPwAAgD9AwPI9z5o8PzO30LwUA8a+hiGwPa1U/b0AAAAAAAAAAPPhjr0BFck9AiLiPWJXNb7H0Yo7QJz3vAAAAAAAAAAAjZKwvYKQij7VFTQ9ka+Pvg5/J73+NqM9AAAAAAAAAADNXdi8bmDVvDmGrj0XruS9f60PPeMJlz0AAIA/AACAPzN+qryP9n+6TjOsPPCPbrzgbaY6PlRAvQAAgD8AAIA/0/x8PkpK2D6aA5e+o+qFvlzjAj4N2UC+AAAAAAAAAAAA0iQ9TRUTPp5LCr7GsHW+8Bi1vTacND0AAAAAAAAAAE20HT3DIVO6onmhM0ua6q5T1JS73TvJswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007312592592592537,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVIQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMBZKe05U+MAWyUTTABjAF0lEdAl39PLX+VDHV9lChoBkdAcFmV/MGHHmgHS/xoCEdAl4BFhPTG53V9lChoBkdAc7/rcTJyQ2gHTRQBaAhHQJeAbqeK8+R1fZQoaAZHQHCii6UaAFxoB00KAWgIR0CXgN8hs67vdX2UKGgGR0Bw7b5O8CgcaAdNOAFoCEdAl4H3MUypJnV9lChoBkdAcbJTbnHNo2gHTQcBaAhHQJeCMK7ZnL91fZQoaAZHQHHKQ5myxA1oB00lAWgIR0CXgrnNPgvUdX2UKGgGR0Bw+YY+B6KMaAdNCQFoCEdAl4LxQrMC93V9lChoBkdAclzzND+irWgHTREBaAhHQJeDLBKtga51fZQoaAZHQHCLPyCnP3VoB0v8aAhHQJeDd5WzWwx1fZQoaAZHQGz0AGB4D9xoB0vvaAhHQJeDgB1cMVl1fZQoaAZHQHDhm9g4OtpoB00FAWgIR0CXg/k8RtgsdX2UKGgGR0BTeR9Cu2ZzaAdL2GgIR0CXhNMJx//edX2UKGgGR0Bv//vWpZOjaAdNRwFoCEdAl4WSu+yquXV9lChoBkdAcRrPCEYfn2gHTQoBaAhHQJeGDbtZ3cJ1fZQoaAZHQHIGCAMDwH9oB00BAWgIR0CXhlEU0vXcdX2UKGgGR0Bx8fK5kK/maAdNGQFoCEdAl4gJk5IYnHV9lChoBkdAb3FepGWldmgHTQkBaAhHQJeIM+fRNRF1fZQoaAZHQHDU8fvF3pxoB00iAWgIR0CXiHkyULUkdX2UKGgGR0BxourcTJyRaAdL+mgIR0CXiQFpwjt5dX2UKGgGR0BvwFdxAB1caAdL+GgIR0CXiSsJIDoydX2UKGgGR0BtSNhw2l2vaAdL+2gIR0CXifoQWepXdX2UKGgGR0Bx5rFZPl+3aAdL7GgIR0CXih3ta6jGdX2UKGgGR0BxTsiFCb+caAdNDwFoCEdAl4pXXmNipnV9lChoBkdAc0WRLsa86GgHTT8CaAhHQJeKfPE87p51fZQoaAZHQHLoZPRArx1oB00SAWgIR0CXis/o7muDdX2UKGgGR0BxbRnOB19waAdNEwFoCEdAl4sh8twrD3V9lChoBkdAbvJxrBTGYWgHTREBaAhHQJeMWTQmeDp1fZQoaAZHQHEmPovBacJoB0v8aAhHQJeMgldC3PR1fZQoaAZHQHNK7NbC79RoB01CAWgIR0CXjMvpQk5ZdX2UKGgGR0BxG/VOKwY+aAdNHgFoCEdAl44QavRqoXV9lChoBkdAcUxWznied2gHS+loCEdAl46snRb8nHV9lChoBkdAcquMYdhiLGgHS/doCEdAl4++3QUpNXV9lChoBkdAci1OhkAggWgHTQkBaAhHQJeQHm3fAKx1fZQoaAZHQG2PsVDa4+doB0v4aAhHQJeQYuEmICV1fZQoaAZHQHNfvJeVs1toB01WAWgIR0CXkIYzBRAKdX2UKGgGR0Bxv14keIVNaAdL+2gIR0CXkLNZ/0/XdX2UKGgGR0BxoTSBshxHaAdL9mgIR0CXkb1dxAB1dX2UKGgGR0BupSE12q1gaAdNAwFoCEdAl5IGa6STyXV9lChoBkdAcZ+O9WZJCmgHS+hoCEdAl5IwJ1JUYXV9lChoBkdAcf31ivxH5WgHTQcBaAhHQJeSl0IToMd1fZQoaAZHQHADp8KG+K1oB00yAWgIR0CXqQoZhrnDdX2UKGgGR0ByLT5ckdFOaAdNKgFoCEdAl6mOkgwGnnV9lChoBkdAcFLgHNX5nGgHS/ZoCEdAl6n08vEjxHV9lChoBkdAbvhDTBqKxmgHTRMBaAhHQJeqSzZ6D5F1fZQoaAZHQHCMtga3qiZoB0vxaAhHQJereorFwUB1fZQoaAZHQG5tpobn5i5oB00hAWgIR0CXrHGgBcRldX2UKGgGR0BwIw+xGDtgaAdNBAFoCEdAl6zrJ4jbBXV9lChoBkdAb5y25QP7N2gHS+9oCEdAl60NrGipN3V9lChoBkdAcD77MgU1ymgHTQUBaAhHQJetdZQpF1B1fZQoaAZHQHDescyWRihoB00XAWgIR0CXrctbs4T9dX2UKGgGR0Btuf9vS+g2aAdNDgFoCEdAl63drXUYsXV9lChoBkdAcDMs8gZCOWgHTQYBaAhHQJeuuxRl6JJ1fZQoaAZHQG7TCROk+HJoB00WAWgIR0CXrvFev6j4dX2UKGgGR0BxpGcBltj1aAdNAQFoCEdAl68O0CzTnnV9lChoBkdAcMGDdxhlUmgHTS4BaAhHQJev70xubZx1fZQoaAZHQHHdJRKpT/BoB0vxaAhHQJev7ZAY51h1fZQoaAZHQHIUFEAo5PxoB0vwaAhHQJewszJp35h1fZQoaAZHQHFOKaoddVxoB0vtaAhHQJew83EQ5FR1fZQoaAZHQHI9tLlFMIxoB00KAWgIR0CXsP/0dzXCdX2UKGgGR0By25OIqLCOaAdL5WgIR0CXsbyDZlFudX2UKGgGR0Bx3+rS3LFGaAdL82gIR0CXs1iSq2jPdX2UKGgGR0BzHD642CNCaAdL+mgIR0CXs61CPZIydX2UKGgGR0BxwYRZlnRLaAdL7WgIR0CXtA2OAAhjdX2UKGgGR0BxuF9PUKAsaAdNJgFoCEdAl7RU8ifQKXV9lChoBkdAch3B1s+FDmgHTRoBaAhHQJe06W1MM7V1fZQoaAZHQHG5NUXHim5oB00QAWgIR0CXtOmVJL/TdX2UKGgGR0Bw6a2d/axpaAdL92gIR0CXtmCuloDgdX2UKGgGR0BvfeqHXVbzaAdN1gJoCEdAl7bBuXNTtXV9lChoBkdAcIAjrzGxU2gHTQcBaAhHQJe2zbCaZx91fZQoaAZHQHKaG+oLofVoB002AWgIR0CXtwpXZGrkdX2UKGgGR0Bv3N3Y+Sr6aAdNNQFoCEdAl7cgEt/WlXV9lChoBkdAcYqsFMZgomgHS/ZoCEdAl7coJ7b+LnV9lChoBkdAcaeNKh+OO2gHS+toCEdAl7co6r/823V9lChoBkdAc1CF23azvGgHTVgBaAhHQJe3oELYwqR1fZQoaAZHQHLB1IZqEe1oB00VAWgIR0CXuArHlwLmdX2UKGgGR0BxMMnLJSzgaAdNAgFoCEdAl7hakAPuonV9lChoBkdAbXViay8jA2gHTQIBaAhHQJe52Il+mWN1fZQoaAZHQHAld4A0bcZoB0vtaAhHQJe6Po2XLNh1fZQoaAZHQHAoK0Y0l7doB00QAWgIR0CXuoeWv8qGdX2UKGgGR0BxNqMefZmJaAdL6mgIR0CXurgLZzxPdX2UKGgGR0Bw+jOY6XByaAdL6mgIR0CXvEOxjawmdX2UKGgGR0BxixoUSIxhaAdNBwFoCEdAl73ThcZ9/nV9lChoBkdAcJZb2Dg62mgHTQ0BaAhHQJe9+xQizLR1fZQoaAZHQHK5iQo1DShoB010AWgIR0CXvgnYQJ5WdX2UKGgGR0BzEJ1JUYKqaAdNWgFoCEdAl746Dwpe/3V9lChoBkdAbUeRvm5lOGgHTQYBaAhHQJe+RlsguAZ1fZQoaAZHQHGc8yvcJt1oB00XAWgIR0CXvsz1schldX2UKGgGR0BvHFktmL9/aAdNBAFoCEdAl77e2qkuYnV9lChoBkdAcqPAavRqoWgHTSABaAhHQJe/A4S6DoR1fZQoaAZHQG6q3jMmnfloB00DAWgIR0CXv11cdHUddX2UKGgGR0BsdRDst03gaAdL+GgIR0CXv3DUExIrdX2UKGgGR0BwjtYA80UHaAdNPQFoCEdAl7+pjc2zfXV9lChoBkdAb2Qzru6VdGgHTQEBaAhHQJfBD7wazeJ1fZQoaAZHQHMUkOd5IH1oB00IAWgIR0CXwdabnX/YdX2UKGgGR0BxlI+UyHmBaAdNCgFoCEdAl8IeqvNeMXV9lChoBkdAb6OrI5o4/GgHTTEBaAhHQJfCpoexOcl1fZQoaAZHQHGhKkM1CPZoB0vgaAhHQJfEHdDYywh1fZQoaAZHQHCvlkhA4XJoB0vmaAhHQJfEHTqjaf11fZQoaAZHQG/2n5zo2XNoB0vyaAhHQJfEbgtOEdx1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 332,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
lunar-lander-mlp/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58944782faf3853a8c24107537836871d39d230f0f07941458f93e6d2019cb32
|
3 |
+
size 87929
|
lunar-lander-mlp/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:774d47aa851fe22742cdcb7f7fb5a2365bf0ce3ec001c35da0ea9f08ae5cf012
|
3 |
+
size 43329
|
lunar-lander-mlp/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar-lander-mlp/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (159 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 271.15638359999997, "std_reward": 18.152678746253077, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-01T10:50:57.415364"}
|