ValentinaKim commited on
Commit
aaf5adb
1 Parent(s): 3df7026

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,640 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-small
3
+ language:
4
+ - multilingual
5
+ library_name: sentence-transformers
6
+ license: apache-2.0
7
+ metrics:
8
+ - cosine_accuracy@1
9
+ - cosine_accuracy@3
10
+ - cosine_accuracy@5
11
+ - cosine_accuracy@10
12
+ - cosine_precision@1
13
+ - cosine_precision@3
14
+ - cosine_precision@5
15
+ - cosine_precision@10
16
+ - cosine_recall@1
17
+ - cosine_recall@3
18
+ - cosine_recall@5
19
+ - cosine_recall@10
20
+ - cosine_ndcg@10
21
+ - cosine_mrr@10
22
+ - cosine_map@100
23
+ pipeline_tag: sentence-similarity
24
+ tags:
25
+ - sentence-transformers
26
+ - sentence-similarity
27
+ - feature-extraction
28
+ - generated_from_trainer
29
+ - dataset_size:94
30
+ - loss:MatryoshkaLoss
31
+ - loss:MultipleNegativesRankingLoss
32
+ widget:
33
+ - source_sentence: 서울여자대학교 수시모집 지원자에게 필요한 최초합격자 발표 정보는 다음과 같습니다. 최초합격자 발표는 2024년 11월
34
+ 8일부터 12월 13일까지입니다. 합격자는 본교 입학처 홈페이지에서 합격 여부를 확인하여야 하며, 등록기간 내에 등록을 마쳐야 합니다.
35
+ sentences:
36
+ - SWU의 SI(Social Innovation)교육에 대해 알려줘.
37
+ - 학교생활기록부 교과성적 반영방법을 설명해 주세요.
38
+ - 서울여자대학교 수시모집 지원자에게 필요한 최초합격자 발표 정보를 알려줘.
39
+ - source_sentence: 고등학교 졸업(예정)자의 경우 학교생활기록부 제출 방법은 다음과 같습니다. 원본 대조필 및 학교장 직인 날인 후
40
+ 제출하여야 합니다. 외국 고등학교 졸업(예정)자의 경우는 한국어나 영어로 번역 공증받은 문서를 제출하여야 합니다.
41
+ sentences:
42
+ - 언론영상학부-저널리즘전공의 졸업 후 진로는 무엇입니까?
43
+ - 서울여자대학교에 있는 박물관학전공의 교육 내용을 설명해줘.
44
+ - 고등학교 졸업(예정)자의 경우 학교생활기록부 제출 방법을 설명해줘.
45
+ - source_sentence: 심리·인지과학학부-인지학습과학전공의 졸업 후 진로는 교육프로그램 개발자, 교육기업 데이터 분석 업무, 인지학습 치료사,
46
+ 인지행동 치료사, 교육컨설턴트, 국가연구소, 이러닝 관련 산업분야 등입니다.
47
+ sentences:
48
+ - 서울여자대학교에 있는 예술심리치료전공의 목표를 설명해줘.
49
+ - 서울여자대학교 수시모집 지원자에게 필요한 교과성적 산출 방법을 설명해줘.
50
+ - 심리·인지과학학부-인지학습과학전공의 졸업 후 진로를 설명하세요.
51
+ - source_sentence: 2024학년도 서울여자대학교 수시모집 지원자에게 필요한 정보는 다음과 같습니다. 수시모집 지원기간은 2024년 9월
52
+ 10일부터 9월 13일까지입니다. 지원자는 인터넷 입학원서접수 사이트에 접속하여 원서접수를 완료해야 하며, 전형료 결제는 신용카드, 계좌이체
53
+ 등으로 가능합니다. 또한, 지원자는 제출서류를 등기우편으로 제출하여야 하며, 서류제출 마감일은 2024년 9월 13일입니다.
54
+ sentences:
55
+ - 박물관학전공의 교육 목표는 무엇입니까?
56
+ - 2024학년도 서울여자대학교 수시모집 지원자에게 필요한 정보를 알려줘.
57
+ - 학생부종합 전형으로 지원할 수 있는 전형의 유형을 모두 알려줘
58
+ - source_sentence: 학교생활기록부 교과성적 대체 점수(비교내신) 대상자는 논술(논술우수자전형), 실기/실적(실기우수자전형_체육) 지원자
59
+ 중 고등학교 졸업학력 검정고시 출신 지원자 및 교과성적 산출 불가자입니다.
60
+ sentences:
61
+ - 고등학교 학교생활기록부 제출 방법을 설명하세요.
62
+ - 청소년학전공의 교육 내용은 무엇입니까?
63
+ - 학교생활기록부 교과성적 대체 점수(비교내신) 대상자를 알려줘.
64
+ model-index:
65
+ - name: Multilingual base SWU Matryoshka
66
+ results:
67
+ - task:
68
+ type: information-retrieval
69
+ name: Information Retrieval
70
+ dataset:
71
+ name: dim 256
72
+ type: dim_256
73
+ metrics:
74
+ - type: cosine_accuracy@1
75
+ value: 0.6363636363636364
76
+ name: Cosine Accuracy@1
77
+ - type: cosine_accuracy@3
78
+ value: 0.9090909090909091
79
+ name: Cosine Accuracy@3
80
+ - type: cosine_accuracy@5
81
+ value: 1.0
82
+ name: Cosine Accuracy@5
83
+ - type: cosine_accuracy@10
84
+ value: 1.0
85
+ name: Cosine Accuracy@10
86
+ - type: cosine_precision@1
87
+ value: 0.6363636363636364
88
+ name: Cosine Precision@1
89
+ - type: cosine_precision@3
90
+ value: 0.30303030303030304
91
+ name: Cosine Precision@3
92
+ - type: cosine_precision@5
93
+ value: 0.2
94
+ name: Cosine Precision@5
95
+ - type: cosine_precision@10
96
+ value: 0.1
97
+ name: Cosine Precision@10
98
+ - type: cosine_recall@1
99
+ value: 0.6363636363636364
100
+ name: Cosine Recall@1
101
+ - type: cosine_recall@3
102
+ value: 0.9090909090909091
103
+ name: Cosine Recall@3
104
+ - type: cosine_recall@5
105
+ value: 1.0
106
+ name: Cosine Recall@5
107
+ - type: cosine_recall@10
108
+ value: 1.0
109
+ name: Cosine Recall@10
110
+ - type: cosine_ndcg@10
111
+ value: 0.8475878017079786
112
+ name: Cosine Ndcg@10
113
+ - type: cosine_mrr@10
114
+ value: 0.7954545454545454
115
+ name: Cosine Mrr@10
116
+ - type: cosine_map@100
117
+ value: 0.7954545454545454
118
+ name: Cosine Map@100
119
+ - task:
120
+ type: information-retrieval
121
+ name: Information Retrieval
122
+ dataset:
123
+ name: dim 128
124
+ type: dim_128
125
+ metrics:
126
+ - type: cosine_accuracy@1
127
+ value: 0.6363636363636364
128
+ name: Cosine Accuracy@1
129
+ - type: cosine_accuracy@3
130
+ value: 0.9090909090909091
131
+ name: Cosine Accuracy@3
132
+ - type: cosine_accuracy@5
133
+ value: 1.0
134
+ name: Cosine Accuracy@5
135
+ - type: cosine_accuracy@10
136
+ value: 1.0
137
+ name: Cosine Accuracy@10
138
+ - type: cosine_precision@1
139
+ value: 0.6363636363636364
140
+ name: Cosine Precision@1
141
+ - type: cosine_precision@3
142
+ value: 0.30303030303030304
143
+ name: Cosine Precision@3
144
+ - type: cosine_precision@5
145
+ value: 0.2
146
+ name: Cosine Precision@5
147
+ - type: cosine_precision@10
148
+ value: 0.1
149
+ name: Cosine Precision@10
150
+ - type: cosine_recall@1
151
+ value: 0.6363636363636364
152
+ name: Cosine Recall@1
153
+ - type: cosine_recall@3
154
+ value: 0.9090909090909091
155
+ name: Cosine Recall@3
156
+ - type: cosine_recall@5
157
+ value: 1.0
158
+ name: Cosine Recall@5
159
+ - type: cosine_recall@10
160
+ value: 1.0
161
+ name: Cosine Recall@10
162
+ - type: cosine_ndcg@10
163
+ value: 0.8475878017079786
164
+ name: Cosine Ndcg@10
165
+ - type: cosine_mrr@10
166
+ value: 0.7954545454545454
167
+ name: Cosine Mrr@10
168
+ - type: cosine_map@100
169
+ value: 0.7954545454545454
170
+ name: Cosine Map@100
171
+ - task:
172
+ type: information-retrieval
173
+ name: Information Retrieval
174
+ dataset:
175
+ name: dim 64
176
+ type: dim_64
177
+ metrics:
178
+ - type: cosine_accuracy@1
179
+ value: 0.6363636363636364
180
+ name: Cosine Accuracy@1
181
+ - type: cosine_accuracy@3
182
+ value: 0.9090909090909091
183
+ name: Cosine Accuracy@3
184
+ - type: cosine_accuracy@5
185
+ value: 1.0
186
+ name: Cosine Accuracy@5
187
+ - type: cosine_accuracy@10
188
+ value: 1.0
189
+ name: Cosine Accuracy@10
190
+ - type: cosine_precision@1
191
+ value: 0.6363636363636364
192
+ name: Cosine Precision@1
193
+ - type: cosine_precision@3
194
+ value: 0.30303030303030304
195
+ name: Cosine Precision@3
196
+ - type: cosine_precision@5
197
+ value: 0.2
198
+ name: Cosine Precision@5
199
+ - type: cosine_precision@10
200
+ value: 0.1
201
+ name: Cosine Precision@10
202
+ - type: cosine_recall@1
203
+ value: 0.6363636363636364
204
+ name: Cosine Recall@1
205
+ - type: cosine_recall@3
206
+ value: 0.9090909090909091
207
+ name: Cosine Recall@3
208
+ - type: cosine_recall@5
209
+ value: 1.0
210
+ name: Cosine Recall@5
211
+ - type: cosine_recall@10
212
+ value: 1.0
213
+ name: Cosine Recall@10
214
+ - type: cosine_ndcg@10
215
+ value: 0.8356850968378461
216
+ name: Cosine Ndcg@10
217
+ - type: cosine_mrr@10
218
+ value: 0.7803030303030302
219
+ name: Cosine Mrr@10
220
+ - type: cosine_map@100
221
+ value: 0.7803030303030302
222
+ name: Cosine Map@100
223
+ ---
224
+
225
+ # Multilingual base SWU Matryoshka
226
+
227
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
228
+
229
+ ## Model Details
230
+
231
+ ### Model Description
232
+ - **Model Type:** Sentence Transformer
233
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
234
+ - **Maximum Sequence Length:** 512 tokens
235
+ - **Output Dimensionality:** 384 tokens
236
+ - **Similarity Function:** Cosine Similarity
237
+ - **Training Dataset:**
238
+ - json
239
+ - **Language:** multilingual
240
+ - **License:** apache-2.0
241
+
242
+ ### Model Sources
243
+
244
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
245
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
246
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
247
+
248
+ ### Full Model Architecture
249
+
250
+ ```
251
+ SentenceTransformer(
252
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
253
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
254
+ (2): Normalize()
255
+ )
256
+ ```
257
+
258
+ ## Usage
259
+
260
+ ### Direct Usage (Sentence Transformers)
261
+
262
+ First install the Sentence Transformers library:
263
+
264
+ ```bash
265
+ pip install -U sentence-transformers
266
+ ```
267
+
268
+ Then you can load this model and run inference.
269
+ ```python
270
+ from sentence_transformers import SentenceTransformer
271
+
272
+ # Download from the 🤗 Hub
273
+ model = SentenceTransformer("ValentinaKim/Multilingual-base-SWU-Matryoshka")
274
+ # Run inference
275
+ sentences = [
276
+ '학교생활기록부 교과성적 대체 점수(비교내신) 대상자는 논술(논술우수자전형), 실기/실적(실기우수자전형_체육) 지원자 중 고등학교 졸업학력 검정고시 출신 지원자 및 교과성적 산출 불가자입니다.',
277
+ '학교생활기록부 교과성적 대체 점수(비교내신) 대상자를 알려줘.',
278
+ '청소년학전공의 교육 내용은 무엇입니까?',
279
+ ]
280
+ embeddings = model.encode(sentences)
281
+ print(embeddings.shape)
282
+ # [3, 384]
283
+
284
+ # Get the similarity scores for the embeddings
285
+ similarities = model.similarity(embeddings, embeddings)
286
+ print(similarities.shape)
287
+ # [3, 3]
288
+ ```
289
+
290
+ <!--
291
+ ### Direct Usage (Transformers)
292
+
293
+ <details><summary>Click to see the direct usage in Transformers</summary>
294
+
295
+ </details>
296
+ -->
297
+
298
+ <!--
299
+ ### Downstream Usage (Sentence Transformers)
300
+
301
+ You can finetune this model on your own dataset.
302
+
303
+ <details><summary>Click to expand</summary>
304
+
305
+ </details>
306
+ -->
307
+
308
+ <!--
309
+ ### Out-of-Scope Use
310
+
311
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
312
+ -->
313
+
314
+ ## Evaluation
315
+
316
+ ### Metrics
317
+
318
+ #### Information Retrieval
319
+ * Dataset: `dim_256`
320
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
321
+
322
+ | Metric | Value |
323
+ |:--------------------|:-----------|
324
+ | cosine_accuracy@1 | 0.6364 |
325
+ | cosine_accuracy@3 | 0.9091 |
326
+ | cosine_accuracy@5 | 1.0 |
327
+ | cosine_accuracy@10 | 1.0 |
328
+ | cosine_precision@1 | 0.6364 |
329
+ | cosine_precision@3 | 0.303 |
330
+ | cosine_precision@5 | 0.2 |
331
+ | cosine_precision@10 | 0.1 |
332
+ | cosine_recall@1 | 0.6364 |
333
+ | cosine_recall@3 | 0.9091 |
334
+ | cosine_recall@5 | 1.0 |
335
+ | cosine_recall@10 | 1.0 |
336
+ | cosine_ndcg@10 | 0.8476 |
337
+ | cosine_mrr@10 | 0.7955 |
338
+ | **cosine_map@100** | **0.7955** |
339
+
340
+ #### Information Retrieval
341
+ * Dataset: `dim_128`
342
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
343
+
344
+ | Metric | Value |
345
+ |:--------------------|:-----------|
346
+ | cosine_accuracy@1 | 0.6364 |
347
+ | cosine_accuracy@3 | 0.9091 |
348
+ | cosine_accuracy@5 | 1.0 |
349
+ | cosine_accuracy@10 | 1.0 |
350
+ | cosine_precision@1 | 0.6364 |
351
+ | cosine_precision@3 | 0.303 |
352
+ | cosine_precision@5 | 0.2 |
353
+ | cosine_precision@10 | 0.1 |
354
+ | cosine_recall@1 | 0.6364 |
355
+ | cosine_recall@3 | 0.9091 |
356
+ | cosine_recall@5 | 1.0 |
357
+ | cosine_recall@10 | 1.0 |
358
+ | cosine_ndcg@10 | 0.8476 |
359
+ | cosine_mrr@10 | 0.7955 |
360
+ | **cosine_map@100** | **0.7955** |
361
+
362
+ #### Information Retrieval
363
+ * Dataset: `dim_64`
364
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
365
+
366
+ | Metric | Value |
367
+ |:--------------------|:-----------|
368
+ | cosine_accuracy@1 | 0.6364 |
369
+ | cosine_accuracy@3 | 0.9091 |
370
+ | cosine_accuracy@5 | 1.0 |
371
+ | cosine_accuracy@10 | 1.0 |
372
+ | cosine_precision@1 | 0.6364 |
373
+ | cosine_precision@3 | 0.303 |
374
+ | cosine_precision@5 | 0.2 |
375
+ | cosine_precision@10 | 0.1 |
376
+ | cosine_recall@1 | 0.6364 |
377
+ | cosine_recall@3 | 0.9091 |
378
+ | cosine_recall@5 | 1.0 |
379
+ | cosine_recall@10 | 1.0 |
380
+ | cosine_ndcg@10 | 0.8357 |
381
+ | cosine_mrr@10 | 0.7803 |
382
+ | **cosine_map@100** | **0.7803** |
383
+
384
+ <!--
385
+ ## Bias, Risks and Limitations
386
+
387
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
388
+ -->
389
+
390
+ <!--
391
+ ### Recommendations
392
+
393
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
394
+ -->
395
+
396
+ ## Training Details
397
+
398
+ ### Training Dataset
399
+
400
+ #### json
401
+
402
+ * Dataset: json
403
+ * Size: 94 training samples
404
+ * Columns: <code>positive</code> and <code>anchor</code>
405
+ * Approximate statistics based on the first 94 samples:
406
+ | | positive | anchor |
407
+ |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
408
+ | type | string | string |
409
+ | details | <ul><li>min: 24 tokens</li><li>mean: 89.93 tokens</li><li>max: 272 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 19.18 tokens</li><li>max: 35 tokens</li></ul> |
410
+ * Samples:
411
+ | positive | anchor |
412
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------|
413
+ | <code>서울여자대학교 수시모집에서 평가하는 요소는 다음과 같습니다. 1. 서류 평가(학업역량 40%, 진로역량 35%, 공동체역량 25%) 2. 면접 평가(인성 및 의사소통능력, 발전가능성) 3. 학교생활기록부에 학교폭력 관련 기재사항이 있을 경우, 정성평가로 반영합니다.</code> | <code>서울여자대학교 수시모집에서 평가하는 요소를 알려줘.</code> |
414
+ | <code>서울여자대학교 학생부종합전형 지원자에게 필요한 지원자격 정보는 다음과 같습니다. 지원자격은 기초생활수급자, 차상위계층, 한부모가족 지원대상자, 국가보훈대상자, 자립지원 대상 아동, 농어촌학생 등입니다. 각 지원자격에 따라 필요한 제출서류가 다르므로, 지원자격에 따라 필요한 제출서류를 확인하여야 합니다.</code> | <code>서울여자대학교 학생부종합전형 지원자에게 필요한 지원자격 정보를 알려줘.</code> |
415
+ | <code>SWU의 SI(Social Innovation)교육은 사회적 가치 확산을 위해 혁신적인 방법론을 적용하여 긍정적인 사회 변화를 유도하는 서울여자대학교만의 차별화된 교육입니다. 바롬종합설계프로젝트는 유네스코한국위원회가 인증한 유네스코지속가능발전교육공식프로젝트입니다.</code> | <code>SWU의 SI(Social Innovation)교육에 대해 알려줘.</code> |
416
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
417
+ ```json
418
+ {
419
+ "loss": "MultipleNegativesRankingLoss",
420
+ "matryoshka_dims": [
421
+ 256,
422
+ 128,
423
+ 64
424
+ ],
425
+ "matryoshka_weights": [
426
+ 1,
427
+ 1,
428
+ 1
429
+ ],
430
+ "n_dims_per_step": -1
431
+ }
432
+ ```
433
+
434
+ ### Training Hyperparameters
435
+ #### Non-Default Hyperparameters
436
+
437
+ - `eval_strategy`: epoch
438
+ - `gradient_accumulation_steps`: 16
439
+ - `learning_rate`: 2e-05
440
+ - `num_train_epochs`: 4
441
+ - `lr_scheduler_type`: cosine
442
+ - `warmup_ratio`: 0.1
443
+ - `tf32`: False
444
+ - `load_best_model_at_end`: True
445
+ - `optim`: adamw_torch_fused
446
+ - `batch_sampler`: no_duplicates
447
+
448
+ #### All Hyperparameters
449
+ <details><summary>Click to expand</summary>
450
+
451
+ - `overwrite_output_dir`: False
452
+ - `do_predict`: False
453
+ - `eval_strategy`: epoch
454
+ - `prediction_loss_only`: True
455
+ - `per_device_train_batch_size`: 8
456
+ - `per_device_eval_batch_size`: 8
457
+ - `per_gpu_train_batch_size`: None
458
+ - `per_gpu_eval_batch_size`: None
459
+ - `gradient_accumulation_steps`: 16
460
+ - `eval_accumulation_steps`: None
461
+ - `learning_rate`: 2e-05
462
+ - `weight_decay`: 0.0
463
+ - `adam_beta1`: 0.9
464
+ - `adam_beta2`: 0.999
465
+ - `adam_epsilon`: 1e-08
466
+ - `max_grad_norm`: 1.0
467
+ - `num_train_epochs`: 4
468
+ - `max_steps`: -1
469
+ - `lr_scheduler_type`: cosine
470
+ - `lr_scheduler_kwargs`: {}
471
+ - `warmup_ratio`: 0.1
472
+ - `warmup_steps`: 0
473
+ - `log_level`: passive
474
+ - `log_level_replica`: warning
475
+ - `log_on_each_node`: True
476
+ - `logging_nan_inf_filter`: True
477
+ - `save_safetensors`: True
478
+ - `save_on_each_node`: False
479
+ - `save_only_model`: False
480
+ - `restore_callback_states_from_checkpoint`: False
481
+ - `no_cuda`: False
482
+ - `use_cpu`: False
483
+ - `use_mps_device`: False
484
+ - `seed`: 42
485
+ - `data_seed`: None
486
+ - `jit_mode_eval`: False
487
+ - `use_ipex`: False
488
+ - `bf16`: False
489
+ - `fp16`: False
490
+ - `fp16_opt_level`: O1
491
+ - `half_precision_backend`: auto
492
+ - `bf16_full_eval`: False
493
+ - `fp16_full_eval`: False
494
+ - `tf32`: False
495
+ - `local_rank`: 0
496
+ - `ddp_backend`: None
497
+ - `tpu_num_cores`: None
498
+ - `tpu_metrics_debug`: False
499
+ - `debug`: []
500
+ - `dataloader_drop_last`: False
501
+ - `dataloader_num_workers`: 0
502
+ - `dataloader_prefetch_factor`: None
503
+ - `past_index`: -1
504
+ - `disable_tqdm`: False
505
+ - `remove_unused_columns`: True
506
+ - `label_names`: None
507
+ - `load_best_model_at_end`: True
508
+ - `ignore_data_skip`: False
509
+ - `fsdp`: []
510
+ - `fsdp_min_num_params`: 0
511
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
512
+ - `fsdp_transformer_layer_cls_to_wrap`: None
513
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
514
+ - `deepspeed`: None
515
+ - `label_smoothing_factor`: 0.0
516
+ - `optim`: adamw_torch_fused
517
+ - `optim_args`: None
518
+ - `adafactor`: False
519
+ - `group_by_length`: False
520
+ - `length_column_name`: length
521
+ - `ddp_find_unused_parameters`: None
522
+ - `ddp_bucket_cap_mb`: None
523
+ - `ddp_broadcast_buffers`: False
524
+ - `dataloader_pin_memory`: True
525
+ - `dataloader_persistent_workers`: False
526
+ - `skip_memory_metrics`: True
527
+ - `use_legacy_prediction_loop`: False
528
+ - `push_to_hub`: False
529
+ - `resume_from_checkpoint`: None
530
+ - `hub_model_id`: None
531
+ - `hub_strategy`: every_save
532
+ - `hub_private_repo`: False
533
+ - `hub_always_push`: False
534
+ - `gradient_checkpointing`: False
535
+ - `gradient_checkpointing_kwargs`: None
536
+ - `include_inputs_for_metrics`: False
537
+ - `eval_do_concat_batches`: True
538
+ - `fp16_backend`: auto
539
+ - `push_to_hub_model_id`: None
540
+ - `push_to_hub_organization`: None
541
+ - `mp_parameters`:
542
+ - `auto_find_batch_size`: False
543
+ - `full_determinism`: False
544
+ - `torchdynamo`: None
545
+ - `ray_scope`: last
546
+ - `ddp_timeout`: 1800
547
+ - `torch_compile`: False
548
+ - `torch_compile_backend`: None
549
+ - `torch_compile_mode`: None
550
+ - `dispatch_batches`: None
551
+ - `split_batches`: None
552
+ - `include_tokens_per_second`: False
553
+ - `include_num_input_tokens_seen`: False
554
+ - `neftune_noise_alpha`: None
555
+ - `optim_target_modules`: None
556
+ - `batch_eval_metrics`: False
557
+ - `batch_sampler`: no_duplicates
558
+ - `multi_dataset_batch_sampler`: proportional
559
+
560
+ </details>
561
+
562
+ ### Training Logs
563
+ | Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_64_cosine_map@100 |
564
+ |:-------:|:-----:|:----------------------:|:----------------------:|:---------------------:|
565
+ | **1.0** | **1** | **0.7955** | **0.7955** | **0.7803** |
566
+ | 2.0 | 2 | 0.7955 | 0.7955 | 0.7803 |
567
+ | 3.0 | 4 | 0.7955 | 0.7955 | 0.7803 |
568
+ | **1.0** | **1** | **0.7955** | **0.7955** | **0.7803** |
569
+ | 2.0 | 2 | 0.7955 | 0.7955 | 0.7803 |
570
+ | 3.0 | 4 | 0.7955 | 0.7955 | 0.7803 |
571
+
572
+ * The bold row denotes the saved checkpoint.
573
+
574
+ ### Framework Versions
575
+ - Python: 3.10.14
576
+ - Sentence Transformers: 3.1.1
577
+ - Transformers: 4.41.2
578
+ - PyTorch: 2.1.2+cu121
579
+ - Accelerate: 0.34.2
580
+ - Datasets: 2.19.1
581
+ - Tokenizers: 0.19.1
582
+
583
+ ## Citation
584
+
585
+ ### BibTeX
586
+
587
+ #### Sentence Transformers
588
+ ```bibtex
589
+ @inproceedings{reimers-2019-sentence-bert,
590
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
591
+ author = "Reimers, Nils and Gurevych, Iryna",
592
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
593
+ month = "11",
594
+ year = "2019",
595
+ publisher = "Association for Computational Linguistics",
596
+ url = "https://arxiv.org/abs/1908.10084",
597
+ }
598
+ ```
599
+
600
+ #### MatryoshkaLoss
601
+ ```bibtex
602
+ @misc{kusupati2024matryoshka,
603
+ title={Matryoshka Representation Learning},
604
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
605
+ year={2024},
606
+ eprint={2205.13147},
607
+ archivePrefix={arXiv},
608
+ primaryClass={cs.LG}
609
+ }
610
+ ```
611
+
612
+ #### MultipleNegativesRankingLoss
613
+ ```bibtex
614
+ @misc{henderson2017efficient,
615
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
616
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
617
+ year={2017},
618
+ eprint={1705.00652},
619
+ archivePrefix={arXiv},
620
+ primaryClass={cs.CL}
621
+ }
622
+ ```
623
+
624
+ <!--
625
+ ## Glossary
626
+
627
+ *Clearly define terms in order to be accessible across audiences.*
628
+ -->
629
+
630
+ <!--
631
+ ## Model Card Authors
632
+
633
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
634
+ -->
635
+
636
+ <!--
637
+ ## Model Card Contact
638
+
639
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
640
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-small",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:249a1637291f537f82450c7618fd21a5e44441273ca005127e7163879e59fbc7
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }