File size: 4,960 Bytes
46c0ac7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: wav2vec2-mms-1b-all-swc-kat6
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: audiofolder
      type: audiofolder
      config: default
      split: train
      args: default
    metrics:
    - name: Wer
      type: wer
      value: 0.37098445595854923
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-mms-1b-all-swc-kat6

This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: inf
- Wer: 0.3710

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 2.8349        | 0.07  | 400   | inf             | 0.4899 |
| 0.8039        | 0.15  | 800   | inf             | 0.4912 |
| 0.7335        | 0.22  | 1200  | inf             | 0.4482 |
| 0.8395        | 0.3   | 1600  | inf             | 0.4829 |
| 0.7626        | 0.37  | 2000  | inf             | 0.4635 |
| 0.9035        | 0.44  | 2400  | inf             | 0.4391 |
| 0.6281        | 0.52  | 2800  | inf             | 0.4668 |
| 0.6756        | 0.59  | 3200  | inf             | 0.4254 |
| 0.7866        | 0.67  | 3600  | inf             | 0.4168 |
| 0.7413        | 0.74  | 4000  | inf             | 0.4168 |
| 0.749         | 0.81  | 4400  | inf             | 0.4148 |
| 0.8165        | 0.89  | 4800  | inf             | 0.4241 |
| 0.7302        | 0.96  | 5200  | inf             | 0.4124 |
| 0.7376        | 1.04  | 5600  | inf             | 0.4368 |
| 0.6833        | 1.11  | 6000  | inf             | 0.3953 |
| 0.6463        | 1.19  | 6400  | inf             | 0.4363 |
| 0.7236        | 1.26  | 6800  | inf             | 0.4383 |
| 0.8837        | 1.33  | 7200  | inf             | 0.4811 |
| 0.6854        | 1.41  | 7600  | inf             | 0.3930 |
| 0.6985        | 1.48  | 8000  | inf             | 0.3979 |
| 0.7139        | 1.56  | 8400  | inf             | 0.3977 |
| 0.6338        | 1.63  | 8800  | inf             | 0.4039 |
| 0.7227        | 1.7   | 9200  | inf             | 0.3922 |
| 0.6843        | 1.78  | 9600  | inf             | 0.4111 |
| 0.6948        | 1.85  | 10000 | inf             | 0.4093 |
| 0.6867        | 1.93  | 10400 | inf             | 0.3927 |
| 0.5753        | 2.0   | 10800 | inf             | 0.4080 |
| 0.6865        | 2.07  | 11200 | inf             | 0.3938 |
| 0.6155        | 2.15  | 11600 | inf             | 0.3920 |
| 0.6743        | 2.22  | 12000 | inf             | 0.3977 |
| 0.5801        | 2.3   | 12400 | inf             | 0.3801 |
| 0.8216        | 2.37  | 12800 | inf             | 0.3917 |
| 0.6199        | 2.44  | 13200 | inf             | 0.4052 |
| 0.6268        | 2.52  | 13600 | inf             | 0.3811 |
| 0.6505        | 2.59  | 14000 | inf             | 0.3855 |
| 0.6578        | 2.67  | 14400 | inf             | 0.3933 |
| 0.6442        | 2.74  | 14800 | inf             | 0.3868 |
| 0.5904        | 2.81  | 15200 | inf             | 0.3782 |
| 0.6249        | 2.89  | 15600 | inf             | 0.3788 |
| 0.5879        | 2.96  | 16000 | inf             | 0.3904 |
| 0.4844        | 3.04  | 16400 | inf             | 0.3728 |
| 0.6309        | 3.11  | 16800 | inf             | 0.3687 |
| 0.5825        | 3.19  | 17200 | inf             | 0.3663 |
| 0.7171        | 3.26  | 17600 | inf             | 0.3772 |
| 0.5471        | 3.33  | 18000 | inf             | 0.3718 |
| 0.5029        | 3.41  | 18400 | inf             | 0.3756 |
| 0.5605        | 3.48  | 18800 | inf             | 0.3751 |
| 0.5582        | 3.56  | 19200 | inf             | 0.3728 |
| 0.6358        | 3.63  | 19600 | inf             | 0.3712 |
| 0.4977        | 3.7   | 20000 | inf             | 0.3655 |
| 0.4828        | 3.78  | 20400 | inf             | 0.3671 |
| 0.6554        | 3.85  | 20800 | inf             | 0.3689 |
| 0.561         | 3.93  | 21200 | inf             | 0.3702 |
| 0.5515        | 4.0   | 21600 | inf             | 0.3710 |


### Framework versions

- Transformers 4.33.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.13.1
- Tokenizers 0.12.1