File size: 2,708 Bytes
2bab341 ac4df9a 1b1262b 6347cb0 1b1262b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
license: cc-by-nc-4.0
language:
- en
---
---
# UniNER-7B-type
**Description**: A UniNER-7B model trained from LLama-7B using the [Pile-NER-type data](https://huggingface.co/datasets/Universal-NER/Pile-NER-type) without human-labeled data. The data was collected by prompting gpt-3.5-turbo-0301 to label entities from passages and provide entity tags. The data collection prompt is as follows:
<div style="background-color: #f6f8fa; padding: 20px; border-radius: 10px; border: 1px solid #e1e4e8; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
<strong>Instruction:</strong><br/>
Given a passage, your task is to extract all entities and identify their entity types. The output should be in a list of tuples of the following format: [("entity 1", "type of entity 1"), ... ].</div>
Check our [paper](https://arxiv.org/abs/2308.03279) for more information. Check our [repo](https://github.com/universal-ner/universal-ner) about how to use the model.
## Comparison with [UniNER-7B-definition](https://huggingface.co/datasets/Universal-NER/Pile-NER-definition)
The UniNER-7B-type model excels when handling entity tags. It performs better on the Universal NER benchmark, which consists of 43 academic datasets across 9 domains. In contrast, UniNER-7B-definition performs better at processing entity types defined in short sentences and is more robust to type paraphrasing.
## Inference
The template for inference instances is as follows:
<div style="background-color: #f6f8fa; padding: 20px; border-radius: 10px; border: 1px solid #e1e4e8; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
<strong>Prompting template:</strong><br/>
A virtual assistant answers questions from a user based on the provided text.<br/>
USER: Text: <span style="color: #d73a49;">{Fill the input text here}</span><br/>
ASSISTANT: I’ve read this text.<br/>
USER: What describes <span style="color: #d73a49;">{Fill the entity type here}</span> in the text?<br/>
ASSISTANT: <span style="color: #0366d6;">(model's predictions in JSON format)</span><br/>
</div>
### Note: Inferences are based on one entity type at a time. For multiple entity types, create separate instances for each type.
## License
This model and its associated data are released under the [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) license. They are primarily used for research purposes.
## Citation
```bibtex
@article{zhou2023universalner,
title={UniversalNER: Targeted Distillation from Large Language Models for Open Named Entity Recognition},
author={Wenxuan Zhou and Sheng Zhang and Yu Gu and Muhao Chen and Hoifung Poon},
year={2023},
eprint={2308.03279},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |