File size: 3,360 Bytes
11b3594 c54b61d 11b3594 1358d90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
pipeline_tag: translation
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
license: apache-2.0
---
This is a [COMET](https://github.com/Unbabel/COMET) evaluation model: It receives a triplet with (source sentence, translation, reference translation) and returns a score that reflects the quality of the translation compared to both source and reference.
# Paper
[COMET-22: Unbabel-IST 2022 Submission for the Metrics Shared Task](https://aclanthology.org/2022.wmt-1.52) (Rei et al., WMT 2022)
## Usage (unbabel-comet)
Using this model requires unbabel-comet to be installed:
```bash
pip install --upgrade pip # ensures that pip is current
pip install unbabel-comet
```
Then you can use the model like this:
```python
from comet import download_model, load_from_checkpoint
model_path = download_model("Unbabel/wmt22-comet-da")
model = load_from_checkpoint(model_path)
data = [
{
"src": "Dem Feuer konnte Einhalt geboten werden",
"mt": "The fire could be stopped",
"ref": "They were able to control the fire."
},
{
"src": "Schulen und Kindergärten wurden eröffnet.",
"mt": "Schools and kindergartens were open",
"ref": "Schools and kindergartens opened"
}
]
model_output = model.predict(data, batch_size=8, gpus=1)
print (model_output)
```
## Intended uses
Our model is intented to be used for **MT evaluation**.
Given a a triplet with (source sentence, translation, reference translation) outputs a single score between 0 and 1 where 1 represents a perfect translation.
## Languages Covered:
This model builds on top of XLM-R which cover the following languages:
Afrikaans, Albanian, Amharic, Arabic, Armenian, Assamese, Azerbaijani, Basque, Belarusian, Bengali, Bengali Romanized, Bosnian, Breton, Bulgarian, Burmese, Burmese, Catalan, Chinese (Simplified), Chinese (Traditional), Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Hausa, Hebrew, Hindi, Hindi Romanized, Hungarian, Icelandic, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Macedonian, Malagasy, Malay, Malayalam, Marathi, Mongolian, Nepali, Norwegian, Oriya, Oromo, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Sanskri, Scottish, Gaelic, Serbian, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tamil, Tamil Romanized, Telugu, Telugu Romanized, Thai, Turkish, Ukrainian, Urdu, Urdu Romanized, Uyghur, Uzbek, Vietnamese, Welsh, Western, Frisian, Xhosa, Yiddish.
Thus, results for language pairs containing uncovered languages are unreliable!
|