--- language: nl license: mit --- # MedRoBERTa.nl finetuned for negation ## Description This model is a finetuned RoBERTa-based model called RobBERT, this model is pre-trained on the Dutch section of OSCAR. All code used for the creation of RobBERT can be found here https://github.com/iPieter/RobBERT. The publication associated with the negation detection task can be found at https://arxiv.org/abs/2209.00470. The code for finetuning the model can be found at https://github.com/umcu/negation-detection. ## Intended use The model is finetuned for negation detection on Dutch clinical text. Since it is a domain-specific model trained on medical data, it is meant to be used on medical NLP tasks for Dutch. This particular model is trained on a 32-max token windows surrounding the concept-to-be negated. Note that we also trained a biLSTM which can be incorporated in [MedCAT](https://github.com/CogStack/MedCAT). ## Minimal example ```python tokenizer = AutoTokenizer\ .from_pretrained("UMCU/MedRoBERTa.nl_NegationDetection") model = AutoModelForTokenClassification\ .from_pretrained("UMCU/MedRoBERTa.nl_NegationDetection") some_text = "De patient was niet aanspreekbaar en hij zag er grauw uit. \ Hij heeft de inspanningstest echter goed doorstaan." inputs = tokenizer(some_text, return_tensors='pt') output = model.forward(inputs) probas = torch.nn.functional.softmax(output.logits[0]).detach().numpy() # koppel aan tokens input_tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0]) target_map = {0: 'B-Negated', 1:'B-NotNegated',2:'I-Negated',3:'I-NotNegated'} results = [{'token': input_tokens[idx], 'proba_negated': proba_arr[0]+proba_arr[2], 'proba_not_negated': proba_arr[1]+proba_arr[3] } for idx,proba_arr in enumerate(probas)] ``` It is perhaps good to note that we assume the [Inside-Outside-Beginning](https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)) format. ## Data The pre-trained model was trained the Dutch section of OSCAR (about 39GB), and is described here: http://dx.doi.org/10.18653/v1/2020.findings-emnlp.292. ## Authors RobBERT: Pieter Delobelle, Thomas Winters, Bettina Berendt, Finetuning: Bram van Es, Sebastiaan Arends. ## Contact If you are having problems with this model please add an issue on our git: https://github.com/umcu/negation-detection/issues ## Usage If you use the model in your work please refer either to https://doi.org/10.5281/zenodo.6980076 or https://doi.org/10.48550/arXiv.2209.00470 ## References Paper: Pieter Delobelle, Thomas Winters, Bettina Berendt (2020), RobBERT: a Dutch RoBERTa-based Language Model, Findings of the Association for Computational Linguistics: EMNLP 2020 Paper: Bram van Es, Leon C. Reteig, Sander C. Tan, Marijn Schraagen, Myrthe M. Hemker, Sebastiaan R.S. Arends, Miguel A.R. Rios, Saskia Haitjema (2022): Negation detection in Dutch clinical texts: an evaluation of rule-based and machine learning methods, Arxiv