File size: 3,122 Bytes
364a367 1ea9434 364a367 1ea9434 364a367 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
datasets:
- openbmb/UltraFeedback
language:
- en
pipeline_tag: text-generation
---
Self-Play Preference Optimization for Language Model Alignment (https://arxiv.org/abs/2405.00675)
# Mistral7B-PairRM-SPPO
This model was developed using [Self-Play Preference Optimization](https://arxiv.org/abs/2405.00675), based on the [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) architecture as starting point. We utilized the prompt sets from the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, splited to 3 parts for 3 iterations by [snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset](https://huggingface.co/datasets/snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset). All responses used are synthetic.
While K = 5, this model uses three samples to estimate the soft probabilities P(y_w > y_l) and P(y_l > y_w). These samples include the winner, the loser, and another random sample. This approach has shown to deliver better performance on AlpacaEval 2.0 compared to the results reported in [our paper](https://arxiv.org/abs/2405.00675).
❗Please refer to the original checkpoint at [**UCLA-AGI/Mistral7B-PairRM-SPPO-Iter3**](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter3) as **reported in our paper**. We anticipate that the version in the paper demonstrates a more consistent performance improvement across all evaluation tasks.
## Links to Other Models
- [Mistral7B-PairRM-SPPO-Iter1](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter1)
- [Mistral7B-PairRM-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter2)
- [Mistral7B-PairRM-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter3)
- [Mistral7B-PairRM-SPPO](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO)
### Model Description
- Model type: A 7B parameter GPT-like model fine-tuned on synthetic datasets.
- Language(s) (NLP): Primarily English
- License: Apache-2.0
- Finetuned from model: mistralai/Mistral-7B-Instruct-v0.2
## [AlpacaEval Leaderboard Evaluation Results](https://tatsu-lab.github.io/alpaca_eval/)
| Model | LC. Win Rate | Win Rate | Avg. Length |
|-------------------------------------------|:------------:|:--------:|:-----------:|
| Mistral7B-PairRM-SPPO | 30.46 | 32.14 | 2114 |
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- eta: 1000
- per_device_train_batch_size: 8
- gradient_accumulation_steps: 1
- seed: 42
- distributed_type: deepspeed_zero3
- num_devices: 8
- optimizer: RMSProp
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_train_epochs: 18.0 (stop at epoch=1.0)
## Citation
```
@misc{wu2024self,
title={Self-Play Preference Optimization for Language Model Alignment},
author={Wu, Yue and Sun, Zhiqing and Yuan, Huizhuo and Ji, Kaixuan and Yang, Yiming and Gu, Quanquan},
year={2024},
eprint={2405.00675},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
``` |