File size: 5,856 Bytes
c4cf474
b130bd7
 
b759072
ca33ccb
 
 
b130bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4cf474
ca33ccb
c4cf474
5c20dcc
c4cf474
ca33ccb
c4cf474
5c20dcc
 
c4cf474
ca33ccb
 
 
 
c4cf474
 
 
ca33ccb
 
 
 
c4cf474
 
ca33ccb
c4cf474
 
ca33ccb
 
 
 
 
c4cf474
 
 
 
 
 
ca33ccb
 
c4cf474
ca33ccb
 
 
 
 
 
 
 
 
 
 
c4cf474
 
 
ca33ccb
 
 
 
 
 
 
 
 
 
 
 
c4cf474
b130bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
---
language:
- en
license: gemma
datasets:
- openbmb/UltraFeedback
pipeline_tag: text-generation
model-index:
- name: Gemma-2-9B-It-SPPO-Iter2
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 31.0
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 42.17
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 0.0
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 11.3
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 10.94
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 31.89
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
      name: Open LLM Leaderboard
---
Self-Play Preference Optimization for Language Model Alignment (https://arxiv.org/abs/2405.00675)

# Gemma-2-9B-It-SPPO-Iter2

This model was developed using [Self-Play Preference Optimization](https://arxiv.org/abs/2405.00675) at iteration 2, based on the [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) architecture as starting point. We utilized the prompt sets from the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, splited to 3 parts for 3 iterations by [snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset](https://huggingface.co/datasets/snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset). All responses used are synthetic.

**Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent/verify/huggingface?returnModelRepoId=google/gemma-2-9b-it)


## Links to Other Models
- [Gemma-2-9B-It-SPPO-Iter1](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter1)
- [Gemma-2-9B-It-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2)
- [Gemma-2-9B-It-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3)

### Model Description

- Model type: A 8B parameter GPT-like model fine-tuned on synthetic datasets.
- Language(s) (NLP): Primarily English
- License: Apache-2.0
- Finetuned from model: google/gemma-2-9b-it


## [AlpacaEval Leaderboard Evaluation Results](https://tatsu-lab.github.io/alpaca_eval/)


|                Model                           | LC. Win Rate | Win Rate | Avg. Length |
|-------------------------------------------|:------------:|:--------:|:-----------:|
|[Llama-3-8B-SPPO Iter1](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter1) |48.70 |40.76 | 1669
|[Llama-3-8B-SPPO Iter2](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2) |50.93 | 44.64 | 1759
|[Llama-3-8B-SPPO Iter3](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3) |**53.27** |**47.74** | 1803






### Training hyperparameters
The following hyperparameters were used during training:

- learning_rate: 5e-07
- eta: 1000
- per_device_train_batch_size: 8
- gradient_accumulation_steps: 1
- seed: 42
- distributed_type: deepspeed_zero3
- num_devices: 8
- optimizer: RMSProp 
- lr_scheduler_type: linear 
- lr_scheduler_warmup_ratio: 0.1
- num_train_epochs: 1.0



  
## Citation
```
@misc{wu2024self,
      title={Self-Play Preference Optimization for Language Model Alignment}, 
      author={Wu, Yue and Sun, Zhiqing and Yuan, Huizhuo and Ji, Kaixuan and Yang, Yiming and Gu, Quanquan},
      year={2024},
      eprint={2405.00675},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
```


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_UCLA-AGI__Gemma-2-9B-It-SPPO-Iter2)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |21.22|
|IFEval (0-Shot)    |31.00|
|BBH (3-Shot)       |42.17|
|MATH Lvl 5 (4-Shot)| 0.00|
|GPQA (0-shot)      |11.30|
|MuSR (0-shot)      |10.94|
|MMLU-PRO (5-shot)  |31.89|