File size: 2,704 Bytes
316218e
 
 
 
 
 
07a82d7
316218e
 
 
 
 
 
 
07a82d7
316218e
 
 
 
 
 
 
2602fea
 
 
224f136
07a82d7
 
 
316218e
 
 
 
07a82d7
 
316218e
 
 
224f136
316218e
224f136
316218e
224f136
6a08784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: apache-2.0
language:
- nl
library_name: transformers
---
[Pieter Delobelle](https://pieter.ai), [François Remy](https://fremycompany.com), [Miryam de Lhoneux](https://people.cs.kuleuven.be/~miryam.delhoneux/), [Thomas Demeester](https://tdmeeste.github.io)

<p align="center"> 
    <img src="https://huggingface.co/DTAI-KULeuven/tweety-7b-dutch/resolve/main/tweety-7b-dutch.png?download=true" alt="Tweety-7b-dutch: A Dutch Large Language Model" width="20%">
 </p>

# Model Card for tweety-7b-dutch

tweety-7b-dutch is a foundation model with a focus on the Dutch language, incorporating a [Dutch tokenizer](https://huggingface.co/yhavinga/gpt-neo-1.3B-dutch) for better understanding and generation of Dutch text. It's built on the mistral architecture, employing flash attention for efficient processing within a context window of 8192 tokens. Tweety-7b-dutch is trained on the [cleaned Dutch mC4 dataset](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned), without instruction finetuning.

## Model Details

### Model Description

Our tweety-7b-dutch model has an Apache 2.0 license, encouraging applications in research, content creation, and language analysis.

- **Tokenizer:** Dutch, 50k tokens ([yhavinga/gpt-neo-1.3B-dutch](https://huggingface.co/yhavinga/gpt-neo-1.3B-dutch))
- **Pre-training data:** Scraped Dutch ([yhavinga/mc4_nl_cleaned](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned))
- **Context window**: 8196 tokens
- **Training data**: 8.5B tokens
- **Developed by:** KU Leuven and UGent
- **Funded by:** KU Leuven BOF, VSC (Flemish Supercomputer Center), [Vlaams AI-onderzoeksprogramma](https://www.flandersairesearch.be/nl)
- **Model type:** Foundation model
- **License:** Apache 2.0

## Uses

As a base model, tweety-7b-dutch is primed for direct applications across text generation and understanding within the Dutch language.

## Technical Specifications

### Compute Infrastructure
Training utilized Nvidia H100 and A100 GPUs. Inference is accessible on lower-end GPUs, basically any GPU capable of running mistral models.

### Model Weights

- This model was trained in bfloat16.
- [GGUF weights](https://huggingface.co/BramVanroy/tweety-7b-dutch-v24a-GGUF) are released by Bram Vanroy.


## Citation

If you use this model, please cite our work as:

```
@article{tweeties2024,
    title = {Trans-Tokenization and Cross-lingual Vocabulary Transfers: Language Adaptation of LLMs for Low-Resource NLP},
    author = {François Remy and Pieter Delobelle and Hayastan Avetisyan and Alfiya Khabibullina and Miryam de Lhoneux and Thomas Demeester},
    url = {https://arxiv.org/abs/2408.04303},
    year = {2024},
    note = {Accepted at COLM 2024}
}
```