--- license: mit base_model: pdelobelle/robbert-v2-dutch-base tags: - generated_from_trainer metrics: - recall - accuracy model-index: - name: robbert_testrun results: [] --- # robbert_testrun This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3318 - Precisions: 0.8562 - Recall: 0.8095 - F-measure: 0.8293 - Accuracy: 0.9476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| | 0.4465 | 1.0 | 269 | 0.3166 | 0.8058 | 0.6865 | 0.6693 | 0.9046 | | 0.2204 | 2.0 | 538 | 0.2474 | 0.8108 | 0.7990 | 0.7979 | 0.9295 | | 0.133 | 3.0 | 807 | 0.2529 | 0.8072 | 0.7719 | 0.7830 | 0.9357 | | 0.087 | 4.0 | 1076 | 0.2601 | 0.8462 | 0.7886 | 0.8012 | 0.9415 | | 0.0578 | 5.0 | 1345 | 0.2896 | 0.8286 | 0.8106 | 0.8186 | 0.9418 | | 0.0307 | 6.0 | 1614 | 0.3017 | 0.8474 | 0.8065 | 0.8240 | 0.9433 | | 0.0257 | 7.0 | 1883 | 0.3435 | 0.8488 | 0.8129 | 0.8270 | 0.9407 | | 0.0159 | 8.0 | 2152 | 0.3318 | 0.8562 | 0.8095 | 0.8293 | 0.9476 | | 0.0086 | 9.0 | 2421 | 0.3629 | 0.8433 | 0.8065 | 0.8224 | 0.9451 | | 0.0067 | 10.0 | 2690 | 0.3700 | 0.8648 | 0.8020 | 0.8272 | 0.9451 | | 0.0064 | 11.0 | 2959 | 0.3835 | 0.8328 | 0.8108 | 0.8203 | 0.9425 | | 0.0041 | 12.0 | 3228 | 0.3625 | 0.8454 | 0.8094 | 0.8255 | 0.9447 | | 0.0028 | 13.0 | 3497 | 0.3734 | 0.8450 | 0.8097 | 0.8254 | 0.9451 | | 0.0021 | 14.0 | 3766 | 0.3706 | 0.8469 | 0.8119 | 0.8274 | 0.9462 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1