--- license: mit base_model: pdelobelle/robbert-v2-dutch-base tags: - generated_from_trainer metrics: - recall - accuracy model-index: - name: robbert0510_lrate7.5b32 results: [] --- # robbert0510_lrate7.5b32 This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5259 - Precisions: 0.8050 - Recall: 0.7984 - F-measure: 0.8013 - Accuracy: 0.9128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| | 0.6483 | 1.0 | 118 | 0.3862 | 0.8737 | 0.6655 | 0.6815 | 0.8772 | | 0.3233 | 2.0 | 236 | 0.3337 | 0.7936 | 0.7423 | 0.7497 | 0.8995 | | 0.1934 | 3.0 | 354 | 0.3600 | 0.7488 | 0.7661 | 0.7482 | 0.8980 | | 0.1207 | 4.0 | 472 | 0.3525 | 0.8202 | 0.7535 | 0.7731 | 0.9056 | | 0.0775 | 5.0 | 590 | 0.4264 | 0.7906 | 0.7756 | 0.7811 | 0.8998 | | 0.05 | 6.0 | 708 | 0.4335 | 0.8100 | 0.7965 | 0.7999 | 0.9087 | | 0.0335 | 7.0 | 826 | 0.4759 | 0.8380 | 0.7810 | 0.7987 | 0.9107 | | 0.0249 | 8.0 | 944 | 0.5115 | 0.8254 | 0.7788 | 0.7976 | 0.9100 | | 0.014 | 9.0 | 1062 | 0.5206 | 0.8249 | 0.7883 | 0.7973 | 0.9107 | | 0.0082 | 10.0 | 1180 | 0.5259 | 0.8050 | 0.7984 | 0.8013 | 0.9128 | | 0.0061 | 11.0 | 1298 | 0.5238 | 0.8068 | 0.7953 | 0.8005 | 0.9118 | | 0.0056 | 12.0 | 1416 | 0.5385 | 0.8059 | 0.7939 | 0.7995 | 0.9114 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0