ThomasSimonini HF staff commited on
Commit
3d35129
1 Parent(s): e6247a6

Attempt to create a streaming version

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ moondream2-mmproj-f16.gguf filter=lfs diff=lfs merge=lfs -text
37
+ moondream2-text-model-f16.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: image-text-to-text
4
+ ---
5
+
6
+ moondream2 is a small vision language model designed to run efficiently on edge devices. Check out the [GitHub repository](https://github.com/vikhyat/moondream) for details, or try it out on the [Hugging Face Space](https://huggingface.co/spaces/vikhyatk/moondream2)!
7
+
8
+ **Benchmarks**
9
+
10
+ | Release | VQAv2 | GQA | TextVQA | DocVQA | TallyQA<br>(simple/full) | POPE<br>(rand/pop/adv) |
11
+ | --- | --- | --- | --- | --- | --- | --- |
12
+ | **2024-07-23** (latest) | 79.4 | 64.9 | 60.2 | 61.9 | 82.0 / 76.8 | 91.3 / 89.7 / 86.9 |
13
+ | 2024-05-20 | 79.4 | 63.1 | 57.2 | 30.5 | 82.1 / 76.6 | 91.5 / 89.6 / 86.2 |
14
+ | 2024-05-08 | 79.0 | 62.7 | 53.1 | 30.5 | 81.6 / 76.1 | 90.6 / 88.3 / 85.0 |
15
+ | 2024-04-02 | 77.7 | 61.7 | 49.7 | 24.3 | 80.1 / 74.2 | - |
16
+ | 2024-03-13 | 76.8 | 60.6 | 46.4 | 22.2 | 79.6 / 73.3 | - |
17
+ | 2024-03-06 | 75.4 | 59.8 | 43.1 | 20.9 | 79.5 / 73.2 | - |
18
+ | 2024-03-04 | 74.2 | 58.5 | 36.4 | - | - | - |
19
+
20
+
21
+ **Usage**
22
+
23
+ ```bash
24
+ pip install transformers einops
25
+ ```
26
+
27
+ ```python
28
+ from transformers import AutoModelForCausalLM, AutoTokenizer
29
+ from PIL import Image
30
+
31
+ model_id = "vikhyatk/moondream2"
32
+ revision = "2024-07-23"
33
+ model = AutoModelForCausalLM.from_pretrained(
34
+ model_id, trust_remote_code=True, revision=revision
35
+ )
36
+ tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
37
+
38
+ image = Image.open('<IMAGE_PATH>')
39
+ enc_image = model.encode_image(image)
40
+ print(model.answer_question(enc_image, "Describe this image.", tokenizer))
41
+ ```
42
+
43
+ The model is updated regularly, so we recommend pinning the model version to a
44
+ specific release as shown above.
added_tokens.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\t\t": 50294,
3
+ "\t\t\t": 50293,
4
+ "\t\t\t\t": 50292,
5
+ "\t\t\t\t\t": 50291,
6
+ "\t\t\t\t\t\t": 50290,
7
+ "\t\t\t\t\t\t\t": 50289,
8
+ "\t\t\t\t\t\t\t\t": 50288,
9
+ "\t\t\t\t\t\t\t\t\t": 50287,
10
+ " ": 50286,
11
+ " ": 50285,
12
+ " ": 50284,
13
+ " ": 50283,
14
+ " ": 50282,
15
+ " ": 50281,
16
+ " ": 50280,
17
+ " ": 50279,
18
+ " ": 50278,
19
+ " ": 50277,
20
+ " ": 50276,
21
+ " ": 50275,
22
+ " ": 50274,
23
+ " ": 50273,
24
+ " ": 50272,
25
+ " ": 50271,
26
+ " ": 50270,
27
+ " ": 50269,
28
+ " ": 50268,
29
+ " ": 50267,
30
+ " ": 50266,
31
+ " ": 50265,
32
+ " ": 50264,
33
+ " ": 50263,
34
+ " ": 50262,
35
+ " ": 50261,
36
+ " ": 50260,
37
+ " ": 50259,
38
+ " ": 50258,
39
+ " ": 50257
40
+ }
config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Moondream"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_moondream.MoondreamConfig",
7
+ "AutoModelForCausalLM": "moondream.Moondream"
8
+ },
9
+ "model_type": "moondream1",
10
+ "text_config": {
11
+ "model_type": "phi"
12
+ },
13
+ "torch_dtype": "float16",
14
+ "transformers_version": "4.36.2"
15
+ }
configuration_moondream.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class PhiConfig(PretrainedConfig):
5
+ model_type = "phi"
6
+ keys_to_ignore_at_inference = ["past_key_values"]
7
+
8
+ def __init__(
9
+ self,
10
+ vocab_size=51200,
11
+ hidden_size=2048,
12
+ intermediate_size=8192,
13
+ num_hidden_layers=24,
14
+ num_attention_heads=32,
15
+ num_key_value_heads=None,
16
+ resid_pdrop=0.0,
17
+ embd_pdrop=0.0,
18
+ attention_dropout=0.0,
19
+ hidden_act="gelu_new",
20
+ max_position_embeddings=2048,
21
+ initializer_range=0.02,
22
+ layer_norm_eps=1e-5,
23
+ use_cache=True,
24
+ tie_word_embeddings=False,
25
+ rope_theta=10000.0,
26
+ rope_scaling=None,
27
+ partial_rotary_factor=0.5,
28
+ bos_token_id=1,
29
+ eos_token_id=2,
30
+ **kwargs,
31
+ ):
32
+ self.vocab_size = vocab_size
33
+ self.hidden_size = hidden_size
34
+ self.intermediate_size = intermediate_size
35
+ self.num_hidden_layers = num_hidden_layers
36
+ self.num_attention_heads = num_attention_heads
37
+
38
+ if num_key_value_heads is None:
39
+ num_key_value_heads = num_attention_heads
40
+
41
+ self.num_key_value_heads = num_key_value_heads
42
+ self.resid_pdrop = resid_pdrop
43
+ self.embd_pdrop = embd_pdrop
44
+ self.attention_dropout = attention_dropout
45
+ self.hidden_act = hidden_act
46
+ self.max_position_embeddings = max_position_embeddings
47
+ self.initializer_range = initializer_range
48
+ self.layer_norm_eps = layer_norm_eps
49
+ self.use_cache = use_cache
50
+ self.rope_theta = rope_theta
51
+ self.rope_scaling = rope_scaling
52
+ self.partial_rotary_factor = partial_rotary_factor
53
+ self._rope_scaling_validation()
54
+
55
+ super().__init__(
56
+ bos_token_id=bos_token_id,
57
+ eos_token_id=eos_token_id,
58
+ tie_word_embeddings=tie_word_embeddings,
59
+ **kwargs,
60
+ )
61
+
62
+ # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
63
+ def _rope_scaling_validation(self):
64
+ """
65
+ Validate the `rope_scaling` configuration.
66
+ """
67
+ if self.rope_scaling is None:
68
+ return
69
+
70
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
71
+ raise ValueError(
72
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
73
+ f"got {self.rope_scaling}"
74
+ )
75
+ rope_scaling_type = self.rope_scaling.get("type", None)
76
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
77
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
78
+ raise ValueError(
79
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
80
+ )
81
+ if (
82
+ rope_scaling_factor is None
83
+ or not isinstance(rope_scaling_factor, float)
84
+ or rope_scaling_factor <= 1.0
85
+ ):
86
+ raise ValueError(
87
+ f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}"
88
+ )
89
+
90
+
91
+ class MoondreamConfig(PretrainedConfig):
92
+ model_type = "moondream1"
93
+
94
+ def __init__(self, **kwargs):
95
+ self.text_config = PhiConfig(**kwargs.pop("text_config", {}))
96
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.36.2"
6
+ }
handler.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+ from PIL import Image
3
+ import torch
4
+ from io import BytesIO
5
+ import base64
6
+
7
+ class EndpointHandler:
8
+ def __init__(self, model_dir):
9
+ self.model_id = "vikhyatk/moondream2"
10
+ self.model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=True)
11
+ self.tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2", trust_remote_code=True)
12
+
13
+ # Check if CUDA (GPU support) is available and then set the device to GPU or CPU
14
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
+ self.model.to(self.device)
16
+
17
+ def preprocess_image(self, encoded_image):
18
+ """Decode and preprocess the input image."""
19
+ decoded_image = base64.b64decode(encoded_image)
20
+ img = Image.open(BytesIO(decoded_image)).convert("RGB")
21
+ return img
22
+
23
+ def __call__(self, data):
24
+ """Handle the incoming request."""
25
+ try:
26
+ # Extract the inputs from the data
27
+ inputs = data.pop("inputs", data)
28
+ input_image = inputs['image']
29
+ question = inputs.get('question', "move to the red ball")
30
+
31
+ # Preprocess the image
32
+ img = self.preprocess_image(input_image)
33
+
34
+ # Perform inference
35
+ enc_image = self.model.encode_image(img).to(self.device)
36
+ answer = self.model.answer_question(enc_image, question, self.tokenizer)
37
+
38
+ # If the output is a tensor, move it back to CPU and convert to list
39
+ if isinstance(answer, torch.Tensor):
40
+ answer = answer.cpu().numpy().tolist()
41
+
42
+ # Create the response
43
+ response = {
44
+ "statusCode": 200,
45
+ "body": {
46
+ "answer": answer
47
+ }
48
+ }
49
+ return response
50
+ except Exception as e:
51
+ # Handle any errors
52
+ response = {
53
+ "statusCode": 500,
54
+ "body": {
55
+ "error": str(e)
56
+ }
57
+ }
58
+ return response
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:927694193ed81f83b9b269c0d1ffa8dc823dec90bce4703a54b22ebd6c9632b6
3
+ size 3733912224
modeling_phi.py ADDED
@@ -0,0 +1,1167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ PyTorch Phi model."""
17
+
18
+
19
+ from typing import List, Optional, Tuple, Union
20
+
21
+ import torch
22
+ import torch.nn.functional as F
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+ from torch.nn import CrossEntropyLoss
26
+
27
+ from transformers.activations import ACT2FN
28
+ from transformers.cache_utils import Cache, DynamicCache
29
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
30
+ from transformers.modeling_outputs import (
31
+ BaseModelOutputWithPast,
32
+ CausalLMOutputWithPast,
33
+ )
34
+ from transformers.modeling_utils import PreTrainedModel
35
+ from transformers.utils import (
36
+ is_flash_attn_2_available,
37
+ is_flash_attn_greater_or_equal_2_10,
38
+ logging,
39
+ )
40
+ from .configuration_moondream import PhiConfig
41
+
42
+
43
+ try: # noqa: SIM105
44
+ if is_flash_attn_2_available():
45
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
46
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
47
+ except ImportError:
48
+ # Workaround for https://github.com/huggingface/transformers/issues/28459,
49
+ # don't move to contextlib.suppress(ImportError)
50
+ pass
51
+
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+
56
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
57
+ def _get_unpad_data(attention_mask):
58
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
59
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
60
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
61
+ cu_seqlens = F.pad(
62
+ torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
63
+ )
64
+ return (
65
+ indices,
66
+ cu_seqlens,
67
+ max_seqlen_in_batch,
68
+ )
69
+
70
+
71
+ # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Phi
72
+ class PhiRotaryEmbedding(nn.Module):
73
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
74
+ super().__init__()
75
+
76
+ self.dim = dim
77
+ self.max_position_embeddings = max_position_embeddings
78
+ self.base = base
79
+ inv_freq = 1.0 / (
80
+ self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
81
+ )
82
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
83
+
84
+ # Build here to make `torch.jit.trace` work.
85
+ self._set_cos_sin_cache(
86
+ seq_len=max_position_embeddings,
87
+ device=self.inv_freq.device,
88
+ dtype=torch.get_default_dtype(),
89
+ )
90
+
91
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
92
+ self.max_seq_len_cached = seq_len
93
+ t = torch.arange(
94
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
95
+ )
96
+
97
+ freqs = torch.outer(t, self.inv_freq)
98
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
99
+ emb = torch.cat((freqs, freqs), dim=-1)
100
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
101
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
102
+
103
+ def forward(self, x, seq_len=None):
104
+ # x: [bs, num_attention_heads, seq_len, head_size]
105
+ if seq_len > self.max_seq_len_cached:
106
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
107
+
108
+ return (
109
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
110
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
111
+ )
112
+
113
+
114
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Phi
115
+ class PhiLinearScalingRotaryEmbedding(PhiRotaryEmbedding):
116
+ """PhiRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
117
+
118
+ def __init__(
119
+ self,
120
+ dim,
121
+ max_position_embeddings=2048,
122
+ base=10000,
123
+ device=None,
124
+ scaling_factor=1.0,
125
+ ):
126
+ self.scaling_factor = scaling_factor
127
+ super().__init__(dim, max_position_embeddings, base, device)
128
+
129
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
130
+ self.max_seq_len_cached = seq_len
131
+ t = torch.arange(
132
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
133
+ )
134
+ t = t / self.scaling_factor
135
+
136
+ freqs = torch.outer(t, self.inv_freq)
137
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
138
+ emb = torch.cat((freqs, freqs), dim=-1)
139
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
140
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
141
+
142
+
143
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Phi
144
+ class PhiDynamicNTKScalingRotaryEmbedding(PhiRotaryEmbedding):
145
+ """PhiRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
146
+
147
+ def __init__(
148
+ self,
149
+ dim,
150
+ max_position_embeddings=2048,
151
+ base=10000,
152
+ device=None,
153
+ scaling_factor=1.0,
154
+ ):
155
+ self.scaling_factor = scaling_factor
156
+ super().__init__(dim, max_position_embeddings, base, device)
157
+
158
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
159
+ self.max_seq_len_cached = seq_len
160
+
161
+ if seq_len > self.max_position_embeddings:
162
+ base = self.base * (
163
+ (self.scaling_factor * seq_len / self.max_position_embeddings)
164
+ - (self.scaling_factor - 1)
165
+ ) ** (self.dim / (self.dim - 2))
166
+ inv_freq = 1.0 / (
167
+ base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
168
+ )
169
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
170
+
171
+ t = torch.arange(
172
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
173
+ )
174
+
175
+ freqs = torch.outer(t, self.inv_freq)
176
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
177
+ emb = torch.cat((freqs, freqs), dim=-1)
178
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
179
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
180
+
181
+
182
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
183
+ def rotate_half(x):
184
+ """Rotates half the hidden dims of the input."""
185
+ x1 = x[..., : x.shape[-1] // 2]
186
+ x2 = x[..., x.shape[-1] // 2 :]
187
+ return torch.cat((-x2, x1), dim=-1)
188
+
189
+
190
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
191
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
192
+ """Applies Rotary Position Embedding to the query and key tensors.
193
+
194
+ Args:
195
+ q (`torch.Tensor`): The query tensor.
196
+ k (`torch.Tensor`): The key tensor.
197
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
198
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
199
+ position_ids (`torch.Tensor`):
200
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
201
+ used to pass offsetted position ids when working with a KV-cache.
202
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
203
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
204
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
205
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
206
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
207
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
208
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
209
+ Returns:
210
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
211
+ """
212
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
213
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
214
+ q_embed = (q * cos) + (rotate_half(q) * sin)
215
+ k_embed = (k * cos) + (rotate_half(k) * sin)
216
+ return q_embed, k_embed
217
+
218
+
219
+ # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Phi
220
+ class PhiMLP(nn.Module):
221
+ def __init__(self, config):
222
+ super().__init__()
223
+ self.config = config
224
+ self.activation_fn = ACT2FN[config.hidden_act]
225
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
226
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
227
+
228
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
229
+ hidden_states = self.fc1(hidden_states)
230
+ hidden_states = self.activation_fn(hidden_states)
231
+ hidden_states = self.fc2(hidden_states)
232
+ return hidden_states
233
+
234
+
235
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
236
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
237
+ """
238
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
239
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
240
+ """
241
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
242
+ if n_rep == 1:
243
+ return hidden_states
244
+ hidden_states = hidden_states[:, :, None, :, :].expand(
245
+ batch, num_key_value_heads, n_rep, slen, head_dim
246
+ )
247
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
248
+
249
+
250
+ class PhiAttention(nn.Module):
251
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
252
+
253
+ def __init__(self, config: PhiConfig, layer_idx: Optional[int] = None):
254
+ super().__init__()
255
+ self.config = config
256
+ self.layer_idx = layer_idx
257
+ if layer_idx is None:
258
+ logger.warning_once(
259
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
260
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
261
+ "when creating this class."
262
+ )
263
+
264
+ self.attention_dropout = config.attention_dropout
265
+ self.hidden_size = config.hidden_size
266
+ self.num_heads = config.num_attention_heads
267
+ self.head_dim = self.hidden_size // self.num_heads
268
+ self.num_key_value_heads = config.num_key_value_heads
269
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
270
+ self.max_position_embeddings = config.max_position_embeddings
271
+ self.rope_theta = config.rope_theta
272
+ self.partial_rotary_factor = config.partial_rotary_factor
273
+ self.is_causal = True
274
+
275
+ if (self.head_dim * self.num_heads) != self.hidden_size:
276
+ raise ValueError(
277
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
278
+ f" and `num_heads`: {self.num_heads})."
279
+ )
280
+
281
+ self.Wqkv = nn.Linear(
282
+ self.hidden_size, 3 * self.num_heads * self.head_dim, bias=True
283
+ )
284
+ self.out_proj = nn.Linear(
285
+ self.num_heads * self.head_dim, self.hidden_size, bias=True
286
+ )
287
+
288
+ self._init_rope()
289
+
290
+ def _init_rope(self):
291
+ if self.config.rope_scaling is None:
292
+ self.rotary_emb = PhiRotaryEmbedding(
293
+ int(self.partial_rotary_factor * self.head_dim),
294
+ max_position_embeddings=self.max_position_embeddings,
295
+ base=self.rope_theta,
296
+ )
297
+ else:
298
+ scaling_type = self.config.rope_scaling["type"]
299
+ scaling_factor = self.config.rope_scaling["factor"]
300
+ if scaling_type == "linear":
301
+ self.rotary_emb = PhiLinearScalingRotaryEmbedding(
302
+ int(self.partial_rotary_factor * self.head_dim),
303
+ max_position_embeddings=self.max_position_embeddings,
304
+ scaling_factor=scaling_factor,
305
+ base=self.rope_theta,
306
+ )
307
+ elif scaling_type == "dynamic":
308
+ self.rotary_emb = PhiDynamicNTKScalingRotaryEmbedding(
309
+ int(self.partial_rotary_factor * self.head_dim),
310
+ max_position_embeddings=self.max_position_embeddings,
311
+ scaling_factor=scaling_factor,
312
+ base=self.rope_theta,
313
+ )
314
+ else:
315
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
316
+
317
+ def forward(
318
+ self,
319
+ hidden_states: torch.Tensor,
320
+ attention_mask: Optional[torch.Tensor] = None,
321
+ position_ids: Optional[torch.LongTensor] = None,
322
+ past_key_value: Optional[Cache] = None,
323
+ output_attentions: bool = False,
324
+ use_cache: bool = False,
325
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
326
+ bsz, q_len, _ = hidden_states.size()
327
+
328
+ query_states, key_states, value_states = self.Wqkv(hidden_states).chunk(
329
+ 3, dim=-1
330
+ )
331
+
332
+ query_states = query_states.view(
333
+ bsz, q_len, self.num_heads, self.head_dim
334
+ ).transpose(1, 2)
335
+ key_states = key_states.view(
336
+ bsz, q_len, self.num_key_value_heads, self.head_dim
337
+ ).transpose(1, 2)
338
+ value_states = value_states.view(
339
+ bsz, q_len, self.num_key_value_heads, self.head_dim
340
+ ).transpose(1, 2)
341
+
342
+ kv_seq_len = key_states.shape[-2]
343
+ if past_key_value is not None:
344
+ if self.layer_idx is None:
345
+ raise ValueError(
346
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
347
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
348
+ "with a layer index."
349
+ )
350
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
351
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
352
+
353
+ # Partial rotary embedding
354
+ query_rot, query_pass = (
355
+ query_states[..., : self.rotary_emb.dim],
356
+ query_states[..., self.rotary_emb.dim :],
357
+ )
358
+ key_rot, key_pass = (
359
+ key_states[..., : self.rotary_emb.dim],
360
+ key_states[..., self.rotary_emb.dim :],
361
+ )
362
+ # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
363
+ query_rot, key_rot = apply_rotary_pos_emb(
364
+ query_rot, key_rot, cos, sin, position_ids
365
+ )
366
+
367
+ # [batch_size, seq_length, num_heads, head_dim]
368
+ query_states = torch.cat((query_rot, query_pass), dim=-1)
369
+ key_states = torch.cat((key_rot, key_pass), dim=-1)
370
+
371
+ if past_key_value is not None:
372
+ cache_kwargs = {
373
+ "sin": sin,
374
+ "cos": cos,
375
+ "partial_rotation_size": self.rotary_emb.dim,
376
+ }
377
+ key_states, value_states = past_key_value.update(
378
+ key_states, value_states, self.layer_idx, cache_kwargs
379
+ )
380
+
381
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
382
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
383
+
384
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
385
+ query_states, key_states, value_states, attn_mask=attention_mask
386
+ )
387
+
388
+ attn_output = attn_output.transpose(1, 2).contiguous()
389
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
390
+
391
+ attn_output = self.out_proj(attn_output)
392
+
393
+ if not output_attentions:
394
+ attn_weights = None
395
+
396
+ return attn_output, attn_weights, past_key_value
397
+
398
+
399
+ class PhiFlashAttention2(PhiAttention):
400
+ """
401
+ Phi flash attention module. This module inherits from `PhiAttention` as the weights of the module stays
402
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
403
+ flash attention and deal with padding tokens in case the input contains any of them.
404
+ """
405
+
406
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
407
+ def __init__(self, *args, **kwargs):
408
+ super().__init__(*args, **kwargs)
409
+
410
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
411
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
412
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
413
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
414
+
415
+ def forward(
416
+ self,
417
+ hidden_states: torch.Tensor,
418
+ attention_mask: Optional[torch.LongTensor] = None,
419
+ position_ids: Optional[torch.LongTensor] = None,
420
+ past_key_value: Optional[Cache] = None,
421
+ output_attentions: bool = False,
422
+ use_cache: bool = False,
423
+ **kwargs,
424
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
425
+ # PhiFlashAttention2 attention does not support output_attentions
426
+
427
+ output_attentions = False
428
+
429
+ bsz, q_len, _ = hidden_states.size()
430
+
431
+ query_states, key_states, value_states = self.Wqkv(hidden_states).chunk(
432
+ 3, dim=-1
433
+ )
434
+
435
+ # Flash attention requires the input to have the shape
436
+ # batch_size x seq_length x head_dim x hidden_dim
437
+ # therefore we just need to keep the original shape
438
+ query_states = query_states.view(
439
+ bsz, q_len, self.num_heads, self.head_dim
440
+ ).transpose(1, 2)
441
+ key_states = key_states.view(
442
+ bsz, q_len, self.num_key_value_heads, self.head_dim
443
+ ).transpose(1, 2)
444
+ value_states = value_states.view(
445
+ bsz, q_len, self.num_key_value_heads, self.head_dim
446
+ ).transpose(1, 2)
447
+
448
+ kv_seq_len = key_states.shape[-2]
449
+ if past_key_value is not None:
450
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
451
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
452
+
453
+ # Partial rotary embedding
454
+ query_rot, query_pass = (
455
+ query_states[..., : self.rotary_emb.dim],
456
+ query_states[..., self.rotary_emb.dim :],
457
+ )
458
+ key_rot, key_pass = (
459
+ key_states[..., : self.rotary_emb.dim],
460
+ key_states[..., self.rotary_emb.dim :],
461
+ )
462
+ # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
463
+ query_rot, key_rot = apply_rotary_pos_emb(
464
+ query_rot, key_rot, cos, sin, position_ids
465
+ )
466
+
467
+ # [batch_size, seq_length, num_heads, head_dim]
468
+ query_states = torch.cat((query_rot, query_pass), dim=-1)
469
+ key_states = torch.cat((key_rot, key_pass), dim=-1)
470
+
471
+ if past_key_value is not None:
472
+ cache_kwargs = {
473
+ "sin": sin,
474
+ "cos": cos,
475
+ "partial_rotation_size": self.rotary_emb.dim,
476
+ }
477
+ key_states, value_states = past_key_value.update(
478
+ key_states, value_states, self.layer_idx, cache_kwargs
479
+ )
480
+
481
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
482
+ # to be able to avoid many of these transpose/reshape/view.
483
+ query_states = query_states.transpose(1, 2)
484
+ key_states = key_states.transpose(1, 2)
485
+ value_states = value_states.transpose(1, 2)
486
+
487
+ attn_dropout = self.attention_dropout if self.training else 0.0
488
+
489
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
490
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
491
+ # cast them back in the correct dtype just to be sure everything works as expected.
492
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
493
+ # in fp32.
494
+
495
+ if query_states.dtype == torch.float32:
496
+ if torch.is_autocast_enabled():
497
+ target_dtype = torch.get_autocast_gpu_dtype()
498
+ # Handle the case where the model is quantized
499
+ elif hasattr(self.config, "_pre_quantization_dtype"):
500
+ target_dtype = self.config._pre_quantization_dtype
501
+ else:
502
+ target_dtype = self.q_proj.weight.dtype
503
+
504
+ logger.warning_once(
505
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
506
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
507
+ f" {target_dtype}."
508
+ )
509
+
510
+ query_states = query_states.to(target_dtype)
511
+ key_states = key_states.to(target_dtype)
512
+ value_states = value_states.to(target_dtype)
513
+
514
+ attn_output = self._flash_attention_forward(
515
+ query_states,
516
+ key_states,
517
+ value_states,
518
+ attention_mask,
519
+ q_len,
520
+ dropout=attn_dropout,
521
+ softmax_scale=None,
522
+ )
523
+
524
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
525
+ attn_output = self.out_proj(attn_output)
526
+
527
+ if not output_attentions:
528
+ attn_weights = None
529
+
530
+ return attn_output, attn_weights, past_key_value
531
+
532
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
533
+ def _flash_attention_forward(
534
+ self,
535
+ query_states,
536
+ key_states,
537
+ value_states,
538
+ attention_mask,
539
+ query_length,
540
+ dropout=0.0,
541
+ softmax_scale=None,
542
+ ):
543
+ """
544
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
545
+ first unpad the input, then computes the attention scores and pad the final attention scores.
546
+
547
+ Args:
548
+ query_states (`torch.Tensor`):
549
+ Input query states to be passed to Flash Attention API
550
+ key_states (`torch.Tensor`):
551
+ Input key states to be passed to Flash Attention API
552
+ value_states (`torch.Tensor`):
553
+ Input value states to be passed to Flash Attention API
554
+ attention_mask (`torch.Tensor`):
555
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
556
+ position of padding tokens and 1 for the position of non-padding tokens.
557
+ dropout (`int`, *optional*):
558
+ Attention dropout
559
+ softmax_scale (`float`, *optional*):
560
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
561
+ """
562
+ if not self._flash_attn_uses_top_left_mask:
563
+ causal = self.is_causal
564
+ else:
565
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
566
+ causal = self.is_causal and query_length != 1
567
+
568
+ # Contains at least one padding token in the sequence
569
+ if attention_mask is not None:
570
+ batch_size = query_states.shape[0]
571
+ (
572
+ query_states,
573
+ key_states,
574
+ value_states,
575
+ indices_q,
576
+ cu_seq_lens,
577
+ max_seq_lens,
578
+ ) = self._upad_input(
579
+ query_states, key_states, value_states, attention_mask, query_length
580
+ )
581
+
582
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
583
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
584
+
585
+ attn_output_unpad = flash_attn_varlen_func(
586
+ query_states,
587
+ key_states,
588
+ value_states,
589
+ cu_seqlens_q=cu_seqlens_q,
590
+ cu_seqlens_k=cu_seqlens_k,
591
+ max_seqlen_q=max_seqlen_in_batch_q,
592
+ max_seqlen_k=max_seqlen_in_batch_k,
593
+ dropout_p=dropout,
594
+ softmax_scale=softmax_scale,
595
+ causal=causal,
596
+ )
597
+
598
+ attn_output = pad_input(
599
+ attn_output_unpad, indices_q, batch_size, query_length
600
+ )
601
+ else:
602
+ attn_output = flash_attn_func(
603
+ query_states,
604
+ key_states,
605
+ value_states,
606
+ dropout,
607
+ softmax_scale=softmax_scale,
608
+ causal=causal,
609
+ )
610
+
611
+ return attn_output
612
+
613
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
614
+ def _upad_input(
615
+ self, query_layer, key_layer, value_layer, attention_mask, query_length
616
+ ):
617
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
618
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
619
+
620
+ key_layer = index_first_axis(
621
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
622
+ indices_k,
623
+ )
624
+ value_layer = index_first_axis(
625
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
626
+ indices_k,
627
+ )
628
+ if query_length == kv_seq_len:
629
+ query_layer = index_first_axis(
630
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
631
+ indices_k,
632
+ )
633
+ cu_seqlens_q = cu_seqlens_k
634
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
635
+ indices_q = indices_k
636
+ elif query_length == 1:
637
+ max_seqlen_in_batch_q = 1
638
+ cu_seqlens_q = torch.arange(
639
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
640
+ ) # There is a memcpy here, that is very bad.
641
+ indices_q = cu_seqlens_q[:-1]
642
+ query_layer = query_layer.squeeze(1)
643
+ else:
644
+ # The -q_len: slice assumes left padding.
645
+ attention_mask = attention_mask[:, -query_length:]
646
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
647
+ query_layer, attention_mask
648
+ )
649
+
650
+ return (
651
+ query_layer,
652
+ key_layer,
653
+ value_layer,
654
+ indices_q,
655
+ (cu_seqlens_q, cu_seqlens_k),
656
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
657
+ )
658
+
659
+
660
+ PHI_ATTENTION_CLASSES = {
661
+ "eager": PhiAttention,
662
+ "flash_attention_2": PhiFlashAttention2,
663
+ }
664
+
665
+
666
+ class PhiDecoderLayer(nn.Module):
667
+ def __init__(self, config: PhiConfig, layer_idx: int):
668
+ super().__init__()
669
+ self.mixer = PHI_ATTENTION_CLASSES[config._attn_implementation](
670
+ config, layer_idx=layer_idx
671
+ )
672
+ self.mlp = PhiMLP(config)
673
+ self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
674
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
675
+
676
+ def forward(
677
+ self,
678
+ hidden_states: torch.Tensor,
679
+ attention_mask: Optional[torch.Tensor] = None,
680
+ position_ids: Optional[torch.LongTensor] = None,
681
+ output_attentions: Optional[bool] = False,
682
+ use_cache: Optional[bool] = False,
683
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
684
+ ) -> Tuple[
685
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
686
+ ]:
687
+ """
688
+ Args:
689
+ hidden_states (`torch.FloatTensor`):
690
+ input to the layer of shape `(batch, seq_len, embed_dim)`
691
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
692
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
693
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
694
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
695
+ `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
696
+ output_attentions (`bool`, *optional*):
697
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
698
+ returned tensors for more detail.
699
+ use_cache (`bool`, *optional*):
700
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
701
+ (see `past_key_values`).
702
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
703
+ """
704
+
705
+ residual = hidden_states
706
+
707
+ hidden_states = self.ln(hidden_states)
708
+
709
+ # Self Attention
710
+ attn_outputs, self_attn_weights, present_key_value = self.mixer(
711
+ hidden_states=hidden_states,
712
+ attention_mask=attention_mask,
713
+ position_ids=position_ids,
714
+ past_key_value=past_key_value,
715
+ output_attentions=output_attentions,
716
+ use_cache=use_cache,
717
+ )
718
+ attn_outputs = self.resid_dropout(attn_outputs)
719
+
720
+ feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
721
+ hidden_states = attn_outputs + feed_forward_hidden_states + residual
722
+ outputs = (hidden_states,)
723
+
724
+ if output_attentions:
725
+ outputs += (self_attn_weights,)
726
+
727
+ if use_cache:
728
+ outputs += (present_key_value,)
729
+
730
+ return outputs
731
+
732
+
733
+ class PhiPreTrainedModel(PreTrainedModel):
734
+ config_class = PhiConfig
735
+ base_model_prefix = "model"
736
+ supports_gradient_checkpointing = True
737
+ _no_split_modules = ["PhiDecoderLayer"]
738
+ _skip_keys_device_placement = "past_key_values"
739
+ _supports_flash_attn_2 = True
740
+ _supports_cache_class = True
741
+
742
+ def _init_weights(self, module):
743
+ std = self.config.initializer_range
744
+ if isinstance(module, nn.Linear):
745
+ module.weight.data.normal_(mean=0.0, std=std)
746
+ if module.bias is not None:
747
+ module.bias.data.zero_()
748
+ elif isinstance(module, nn.Embedding):
749
+ module.weight.data.normal_(mean=0.0, std=std)
750
+ if module.padding_idx is not None:
751
+ module.weight.data[module.padding_idx].zero_()
752
+
753
+
754
+ class Embedding(nn.Module):
755
+ def __init__(self, config: PhiConfig):
756
+ super().__init__()
757
+ self.wte = nn.Embedding(
758
+ config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
759
+ )
760
+
761
+ def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
762
+ return self.wte(input_ids)
763
+
764
+
765
+ class PhiModel(PhiPreTrainedModel):
766
+ """
767
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhiDecoderLayer`]
768
+
769
+ Args:
770
+ config: PhiConfig
771
+ """
772
+
773
+ def __init__(self, config: PhiConfig):
774
+ super().__init__(config)
775
+ self.padding_idx = config.pad_token_id
776
+ self.vocab_size = config.vocab_size
777
+
778
+ self.embd = Embedding(config)
779
+ self.embed_dropout = nn.Dropout(config.embd_pdrop)
780
+ self.h = nn.ModuleList(
781
+ [
782
+ PhiDecoderLayer(config, layer_idx)
783
+ for layer_idx in range(config.num_hidden_layers)
784
+ ]
785
+ )
786
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
787
+
788
+ self.gradient_checkpointing = False
789
+ # Initialize weights and apply final processing
790
+ self.post_init()
791
+
792
+ def get_input_embeddings(self):
793
+ return self.embd.wte
794
+
795
+ def set_input_embeddings(self, value):
796
+ self.embd.wte = value
797
+
798
+ def forward(
799
+ self,
800
+ input_ids: torch.LongTensor = None,
801
+ attention_mask: Optional[torch.Tensor] = None,
802
+ position_ids: Optional[torch.LongTensor] = None,
803
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
804
+ inputs_embeds: Optional[torch.FloatTensor] = None,
805
+ use_cache: Optional[bool] = None,
806
+ output_attentions: Optional[bool] = None,
807
+ output_hidden_states: Optional[bool] = None,
808
+ return_dict: Optional[bool] = None,
809
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
810
+ output_attentions = (
811
+ output_attentions
812
+ if output_attentions is not None
813
+ else self.config.output_attentions
814
+ )
815
+ output_hidden_states = (
816
+ output_hidden_states
817
+ if output_hidden_states is not None
818
+ else self.config.output_hidden_states
819
+ )
820
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
821
+
822
+ return_dict = (
823
+ return_dict if return_dict is not None else self.config.use_return_dict
824
+ )
825
+
826
+ # retrieve input_ids and inputs_embeds
827
+ if input_ids is not None and inputs_embeds is not None:
828
+ raise ValueError(
829
+ "You cannot specify both input_ids and inputs_embeds at the same time"
830
+ )
831
+ elif input_ids is not None:
832
+ batch_size, seq_length = input_ids.shape[:2]
833
+ elif inputs_embeds is not None:
834
+ batch_size, seq_length = inputs_embeds.shape[:2]
835
+ else:
836
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
837
+
838
+ past_key_values_length = 0
839
+
840
+ if self.gradient_checkpointing and self.training:
841
+ if use_cache:
842
+ logger.warning_once(
843
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
844
+ )
845
+ use_cache = False
846
+
847
+ if use_cache:
848
+ use_legacy_cache = not isinstance(past_key_values, Cache)
849
+ if use_legacy_cache:
850
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
851
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
852
+
853
+ if position_ids is None:
854
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
855
+ position_ids = torch.arange(
856
+ past_key_values_length,
857
+ seq_length + past_key_values_length,
858
+ dtype=torch.long,
859
+ device=device,
860
+ )
861
+ position_ids = position_ids.unsqueeze(0)
862
+
863
+ if inputs_embeds is None:
864
+ inputs_embeds = self.embd(input_ids)
865
+
866
+ inputs_embeds = self.embed_dropout(inputs_embeds)
867
+
868
+ # Attention mask.
869
+ if self._use_flash_attention_2:
870
+ # 2d mask is passed through the layers
871
+ attention_mask = (
872
+ attention_mask
873
+ if (attention_mask is not None and 0 in attention_mask)
874
+ else None
875
+ )
876
+ else:
877
+ # 4d mask is passed through the layers
878
+ attention_mask = _prepare_4d_causal_attention_mask(
879
+ attention_mask,
880
+ (batch_size, seq_length),
881
+ inputs_embeds,
882
+ past_key_values_length,
883
+ )
884
+
885
+ hidden_states = inputs_embeds
886
+
887
+ # decoder layers
888
+ all_hidden_states = () if output_hidden_states else None
889
+ all_self_attns = () if output_attentions else None
890
+ next_decoder_cache = None
891
+
892
+ for decoder_layer in self.h:
893
+ if output_hidden_states:
894
+ all_hidden_states += (hidden_states,)
895
+
896
+ if self.gradient_checkpointing and self.training:
897
+ layer_outputs = self._gradient_checkpointing_func(
898
+ decoder_layer.__call__,
899
+ hidden_states,
900
+ attention_mask,
901
+ position_ids,
902
+ past_key_values,
903
+ output_attentions,
904
+ )
905
+ else:
906
+ layer_outputs = decoder_layer(
907
+ hidden_states,
908
+ attention_mask=attention_mask,
909
+ position_ids=position_ids,
910
+ past_key_value=past_key_values,
911
+ output_attentions=output_attentions,
912
+ use_cache=use_cache,
913
+ )
914
+
915
+ hidden_states = layer_outputs[0]
916
+
917
+ if use_cache:
918
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
919
+
920
+ if output_attentions:
921
+ all_self_attns += (layer_outputs[1],)
922
+
923
+ # add hidden states from the last decoder layer
924
+ if output_hidden_states:
925
+ all_hidden_states += (hidden_states,)
926
+
927
+ next_cache = None
928
+ if use_cache:
929
+ next_cache = (
930
+ next_decoder_cache.to_legacy_cache()
931
+ if use_legacy_cache
932
+ else next_decoder_cache
933
+ )
934
+ if not return_dict:
935
+ return tuple(
936
+ v
937
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
938
+ if v is not None
939
+ )
940
+ return BaseModelOutputWithPast(
941
+ last_hidden_state=hidden_states,
942
+ past_key_values=next_cache,
943
+ hidden_states=all_hidden_states,
944
+ attentions=all_self_attns,
945
+ )
946
+
947
+
948
+ class CausalLMHead(nn.Module):
949
+ """Causal Language Modeling head. Simplified version."""
950
+
951
+ def __init__(self, config):
952
+ super().__init__()
953
+ self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
954
+ self.linear = nn.Linear(config.hidden_size, config.vocab_size)
955
+
956
+ def forward(self, hidden_states):
957
+ return self.linear(self.ln(hidden_states))
958
+
959
+
960
+ class PhiForCausalLM(PhiPreTrainedModel):
961
+ _tied_weights_keys = ["lm_head.linear.weight"]
962
+
963
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi,bias=False->bias=True
964
+ def __init__(self, config):
965
+ super().__init__(config)
966
+ self.transformer = PhiModel(config)
967
+ self.vocab_size = config.vocab_size
968
+ self.lm_head = CausalLMHead(config)
969
+
970
+ # Initialize weights and apply final processing
971
+ self.post_init()
972
+
973
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
974
+ def get_input_embeddings(self):
975
+ return self.transformer.embd.wte
976
+
977
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
978
+ def set_input_embeddings(self, value):
979
+ self.model.embd.wte = value
980
+
981
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
982
+ def get_output_embeddings(self):
983
+ return self.lm_head.linear
984
+
985
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
986
+ def set_output_embeddings(self, new_embeddings):
987
+ self.lm_head.linear = new_embeddings
988
+
989
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
990
+ def set_decoder(self, decoder):
991
+ self.model = decoder
992
+
993
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
994
+ def get_decoder(self):
995
+ return self.model
996
+
997
+ def forward(
998
+ self,
999
+ input_ids: torch.LongTensor = None,
1000
+ attention_mask: Optional[torch.Tensor] = None,
1001
+ position_ids: Optional[torch.LongTensor] = None,
1002
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1003
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1004
+ labels: Optional[torch.LongTensor] = None,
1005
+ use_cache: Optional[bool] = None,
1006
+ output_attentions: Optional[bool] = None,
1007
+ output_hidden_states: Optional[bool] = None,
1008
+ return_dict: Optional[bool] = None,
1009
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1010
+ r"""
1011
+ Args:
1012
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1013
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1014
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1015
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1016
+
1017
+ Returns:
1018
+
1019
+ Example:
1020
+
1021
+ ```python
1022
+ >>> from transformers import AutoTokenizer, PhiForCausalLM
1023
+
1024
+ >>> model = PhiForCausalLM.from_pretrained("microsoft/phi-1")
1025
+ >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1")
1026
+
1027
+ >>> prompt = "This is an example script ."
1028
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1029
+
1030
+ >>> # Generate
1031
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1032
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1033
+ 'This is an example script .\n\n\n\nfrom typing import List\n\ndef find_most_common_letter(words: List[str'
1034
+ ```"""
1035
+
1036
+ output_attentions = (
1037
+ output_attentions
1038
+ if output_attentions is not None
1039
+ else self.config.output_attentions
1040
+ )
1041
+ output_hidden_states = (
1042
+ output_hidden_states
1043
+ if output_hidden_states is not None
1044
+ else self.config.output_hidden_states
1045
+ )
1046
+ return_dict = (
1047
+ return_dict if return_dict is not None else self.config.use_return_dict
1048
+ )
1049
+
1050
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1051
+ outputs = self.transformer(
1052
+ input_ids=input_ids,
1053
+ attention_mask=attention_mask,
1054
+ position_ids=position_ids,
1055
+ past_key_values=past_key_values,
1056
+ inputs_embeds=inputs_embeds,
1057
+ use_cache=use_cache,
1058
+ output_attentions=output_attentions,
1059
+ output_hidden_states=output_hidden_states,
1060
+ return_dict=return_dict,
1061
+ )
1062
+
1063
+ hidden_states = outputs[0]
1064
+ logits = self.lm_head(hidden_states)
1065
+
1066
+ loss = None
1067
+ if labels is not None:
1068
+ # Shift so that tokens < n predict n
1069
+ shift_logits = logits[..., :-1, :].contiguous()
1070
+ shift_labels = labels[..., 1:].contiguous()
1071
+ # Flatten the tokens
1072
+ loss_fct = CrossEntropyLoss()
1073
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1074
+ shift_labels = shift_labels.view(-1)
1075
+ # Enable model parallelism
1076
+ shift_labels = shift_labels.to(shift_logits.device)
1077
+ loss = loss_fct(shift_logits, shift_labels)
1078
+
1079
+ if not return_dict:
1080
+ output = (logits,) + outputs[1:]
1081
+ return (loss,) + output if loss is not None else output
1082
+
1083
+ return CausalLMOutputWithPast(
1084
+ loss=loss,
1085
+ logits=logits,
1086
+ past_key_values=outputs.past_key_values,
1087
+ hidden_states=outputs.hidden_states,
1088
+ attentions=outputs.attentions,
1089
+ )
1090
+
1091
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation
1092
+ def prepare_inputs_for_generation(
1093
+ self,
1094
+ input_ids,
1095
+ past_key_values=None,
1096
+ attention_mask=None,
1097
+ inputs_embeds=None,
1098
+ **kwargs,
1099
+ ):
1100
+ if past_key_values is not None:
1101
+ if isinstance(past_key_values, Cache):
1102
+ cache_length = past_key_values.get_seq_length()
1103
+ past_length = past_key_values.seen_tokens
1104
+ max_cache_length = past_key_values.get_max_length()
1105
+ else:
1106
+ cache_length = past_length = past_key_values[0][0].shape[2]
1107
+ max_cache_length = None
1108
+
1109
+ # Keep only the unprocessed tokens:
1110
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1111
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1112
+ # input)
1113
+ if (
1114
+ attention_mask is not None
1115
+ and attention_mask.shape[1] > input_ids.shape[1]
1116
+ ):
1117
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1118
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1119
+ # input_ids based on the past_length.
1120
+ elif past_length < input_ids.shape[1]:
1121
+ input_ids = input_ids[:, past_length:]
1122
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1123
+
1124
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1125
+ if (
1126
+ max_cache_length is not None
1127
+ and attention_mask is not None
1128
+ and cache_length + input_ids.shape[1] > max_cache_length
1129
+ ):
1130
+ attention_mask = attention_mask[:, -max_cache_length:]
1131
+
1132
+ position_ids = kwargs.get("position_ids", None)
1133
+ if attention_mask is not None and position_ids is None:
1134
+ # create position_ids on the fly for batch generation
1135
+ position_ids = attention_mask.long().cumsum(-1) - 1
1136
+ position_ids.masked_fill_(attention_mask == 0, 1)
1137
+ if past_key_values:
1138
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1139
+
1140
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1141
+ if inputs_embeds is not None and (input_ids is None or input_ids.shape[1] == 0):
1142
+ model_inputs = {"inputs_embeds": inputs_embeds}
1143
+ else:
1144
+ model_inputs = {"input_ids": input_ids}
1145
+
1146
+ model_inputs.update(
1147
+ {
1148
+ "position_ids": position_ids,
1149
+ "past_key_values": past_key_values,
1150
+ "use_cache": kwargs.get("use_cache"),
1151
+ "attention_mask": attention_mask,
1152
+ }
1153
+ )
1154
+ return model_inputs
1155
+
1156
+ @staticmethod
1157
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
1158
+ def _reorder_cache(past_key_values, beam_idx):
1159
+ reordered_past = ()
1160
+ for layer_past in past_key_values:
1161
+ reordered_past += (
1162
+ tuple(
1163
+ past_state.index_select(0, beam_idx.to(past_state.device))
1164
+ for past_state in layer_past
1165
+ ),
1166
+ )
1167
+ return reordered_past
moondream.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from .vision_encoder import VisionEncoder
3
+ from .configuration_moondream import MoondreamConfig
4
+ from transformers import PreTrainedModel, TextStreamer
5
+
6
+ from .modeling_phi import PhiForCausalLM
7
+ from .configuration_moondream import PhiConfig
8
+
9
+ class Moondream(PreTrainedModel):
10
+ config_class = MoondreamConfig
11
+ _supports_flash_attn_2 = True
12
+
13
+ def __init__(self, config):
14
+ super().__init__(config)
15
+ self.vision_encoder = VisionEncoder(
16
+ use_flash_attn=config._attn_implementation == "flash_attention_2"
17
+ )
18
+
19
+ if type(config.text_config) == dict:
20
+ phi_config = PhiConfig(
21
+ **config.text_config, attn_implementation=config._attn_implementation
22
+ )
23
+ else:
24
+ phi_config = config.text_config
25
+ self.text_model = PhiForCausalLM(phi_config)
26
+
27
+ @property
28
+ def device(self):
29
+ return self.text_model.device
30
+
31
+ def encode_image(self, image):
32
+ with torch.no_grad():
33
+ return self.vision_encoder(image)
34
+
35
+ def input_embeds(self, prompt, image_embeds, tokenizer):
36
+ def _tokenize(txt):
37
+ return tokenizer(
38
+ txt, return_tensors="pt", add_special_tokens=False
39
+ ).input_ids.to(self.device)
40
+
41
+ text_emb = self.text_model.get_input_embeddings()
42
+
43
+ # Add BOS token
44
+ embeds = []
45
+ embeds.append(
46
+ text_emb((torch.tensor([[tokenizer.bos_token_id]], device=self.device)))
47
+ )
48
+
49
+ if "<image>" not in prompt:
50
+ embeds.append(text_emb(_tokenize(prompt)))
51
+ else:
52
+ assert prompt.count("<image>") == 1
53
+ before, after = prompt.split("<image>")
54
+ if len(before) > 0:
55
+ embeds.append(text_emb(_tokenize(before)))
56
+ embeds.append(image_embeds.to(self.device))
57
+ if len(after) > 0:
58
+ embeds.append(text_emb(_tokenize(after)))
59
+
60
+ return torch.cat(embeds, dim=1)
61
+
62
+ def get_input_embeddings(self):
63
+ return self.text_model.get_input_embeddings()
64
+
65
+ def generate(
66
+ self,
67
+ image_embeds,
68
+ prompt,
69
+ tokenizer,
70
+ max_new_tokens=128,
71
+ **kwargs,
72
+ ):
73
+ generate_config = {
74
+ "eos_token_id": tokenizer.eos_token_id,
75
+ "bos_token_id": tokenizer.bos_token_id,
76
+ "pad_token_id": tokenizer.bos_token_id,
77
+ "max_new_tokens": max_new_tokens,
78
+ **kwargs,
79
+ }
80
+
81
+ with torch.no_grad():
82
+ inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
83
+ streamer = TextStreamer(inputs_embeds)
84
+ output_ids = self.text_model.generate(
85
+ inputs_embeds=inputs_embeds, streamer=streamer, **generate_config
86
+ )
87
+ print("OUTPUTIDS" + output_ids)
88
+
89
+ return tokenizer.batch_decode(output_ids, skip_special_tokens=True)
90
+
91
+ def answer_question(
92
+ self,
93
+ image_embeds,
94
+ question,
95
+ tokenizer,
96
+ chat_history="",
97
+ result_queue=None,
98
+ **kwargs,
99
+ ):
100
+ prompt = f"<image>\n\n{chat_history}Question: {question}\n\nAnswer:"
101
+ answer = self.generate(
102
+ image_embeds,
103
+ prompt,
104
+ tokenizer=tokenizer,
105
+ max_new_tokens=512,
106
+ **kwargs,
107
+ )[0]
108
+ cleaned_answer = answer.strip()
109
+
110
+ # Use the result_queue to pass the result if it is provided
111
+ if result_queue:
112
+ result_queue.put(cleaned_answer)
113
+ else:
114
+ return cleaned_answer
115
+
116
+ def batch_answer(
117
+ self,
118
+ images,
119
+ prompts,
120
+ tokenizer,
121
+ **kwargs,
122
+ ):
123
+ image_embeds = self.encode_image(images)
124
+
125
+ templated_prompts = [
126
+ f"<image>\n\nQuestion: {prompt}\n\nAnswer:" for prompt in prompts
127
+ ]
128
+ prompt_embs = [
129
+ self.input_embeds(prompt, image_embed.unsqueeze(0), tokenizer)[0]
130
+ for prompt, image_embed in zip(templated_prompts, image_embeds)
131
+ ]
132
+
133
+ bos_emb = prompt_embs[0][0]
134
+ max_len = max([p.shape[0] for p in prompt_embs])
135
+
136
+ inputs_embeds = torch.cat(
137
+ [
138
+ torch.cat([bos_emb.repeat(max_len - p.shape[0], 1), p]).unsqueeze(0)
139
+ for p in prompt_embs
140
+ ],
141
+ dim=0,
142
+ )
143
+ attention_mask = torch.cat(
144
+ [
145
+ torch.cat(
146
+ [
147
+ torch.zeros(
148
+ 1,
149
+ max_len - p.shape[0],
150
+ device=self.device,
151
+ dtype=torch.long,
152
+ ),
153
+ torch.ones(1, p.shape[0], device=self.device, dtype=torch.long),
154
+ ],
155
+ dim=1,
156
+ )
157
+ for p in prompt_embs
158
+ ],
159
+ dim=0,
160
+ )
161
+
162
+ generate_config = {
163
+ "eos_token_id": tokenizer.eos_token_id,
164
+ "bos_token_id": tokenizer.bos_token_id,
165
+ "pad_token_id": tokenizer.bos_token_id,
166
+ "max_new_tokens": 512,
167
+ **kwargs,
168
+ }
169
+
170
+ with torch.no_grad():
171
+ output_ids = self.text_model.generate(
172
+ inputs_embeds=inputs_embeds,
173
+ attention_mask=attention_mask,
174
+ **generate_config,
175
+ )
176
+
177
+ return [
178
+ x.strip()
179
+ for x in tokenizer.batch_decode(output_ids, skip_special_tokens=True)
180
+ ]
moondream2-mmproj-f16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cc1cb3660d87ff56432ebeb7884ad35d67c48c7b9f6b2856f305e39c38eed8f
3
+ size 909777984
moondream2-text-model-f16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e17e9107fb8781629b3c8ce177de57ffeae90fe14adcf7b99f0eef025889696
3
+ size 2839534976
special_tokens_map.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "unk_token": "<|endoftext|>"
5
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "50256": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "50257": {
13
+ "content": " ",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": false
19
+ },
20
+ "50258": {
21
+ "content": " ",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": false
27
+ },
28
+ "50259": {
29
+ "content": " ",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": false
35
+ },
36
+ "50260": {
37
+ "content": " ",
38
+ "lstrip": false,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": false
43
+ },
44
+ "50261": {
45
+ "content": " ",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": false
51
+ },
52
+ "50262": {
53
+ "content": " ",
54
+ "lstrip": false,
55
+ "normalized": true,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": false
59
+ },
60
+ "50263": {
61
+ "content": " ",
62
+ "lstrip": false,
63
+ "normalized": true,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": false
67
+ },
68
+ "50264": {
69
+ "content": " ",
70
+ "lstrip": false,
71
+ "normalized": true,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": false
75
+ },
76
+ "50265": {
77
+ "content": " ",
78
+ "lstrip": false,
79
+ "normalized": true,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": false
83
+ },
84
+ "50266": {
85
+ "content": " ",
86
+ "lstrip": false,
87
+ "normalized": true,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": false
91
+ },
92
+ "50267": {
93
+ "content": " ",
94
+ "lstrip": false,
95
+ "normalized": true,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": false
99
+ },
100
+ "50268": {
101
+ "content": " ",
102
+ "lstrip": false,
103
+ "normalized": true,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": false
107
+ },
108
+ "50269": {
109
+ "content": " ",
110
+ "lstrip": false,
111
+ "normalized": true,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": false
115
+ },
116
+ "50270": {
117
+ "content": " ",
118
+ "lstrip": false,
119
+ "normalized": true,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "50271": {
125
+ "content": " ",
126
+ "lstrip": false,
127
+ "normalized": true,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "50272": {
133
+ "content": " ",
134
+ "lstrip": false,
135
+ "normalized": true,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "50273": {
141
+ "content": " ",
142
+ "lstrip": false,
143
+ "normalized": true,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "50274": {
149
+ "content": " ",
150
+ "lstrip": false,
151
+ "normalized": true,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "50275": {
157
+ "content": " ",
158
+ "lstrip": false,
159
+ "normalized": true,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "50276": {
165
+ "content": " ",
166
+ "lstrip": false,
167
+ "normalized": true,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "50277": {
173
+ "content": " ",
174
+ "lstrip": false,
175
+ "normalized": true,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ },
180
+ "50278": {
181
+ "content": " ",
182
+ "lstrip": false,
183
+ "normalized": true,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": false
187
+ },
188
+ "50279": {
189
+ "content": " ",
190
+ "lstrip": false,
191
+ "normalized": true,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": false
195
+ },
196
+ "50280": {
197
+ "content": " ",
198
+ "lstrip": false,
199
+ "normalized": true,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": false
203
+ },
204
+ "50281": {
205
+ "content": " ",
206
+ "lstrip": false,
207
+ "normalized": true,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": false
211
+ },
212
+ "50282": {
213
+ "content": " ",
214
+ "lstrip": false,
215
+ "normalized": true,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": false
219
+ },
220
+ "50283": {
221
+ "content": " ",
222
+ "lstrip": false,
223
+ "normalized": true,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": false
227
+ },
228
+ "50284": {
229
+ "content": " ",
230
+ "lstrip": false,
231
+ "normalized": true,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": false
235
+ },
236
+ "50285": {
237
+ "content": " ",
238
+ "lstrip": false,
239
+ "normalized": true,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": false
243
+ },
244
+ "50286": {
245
+ "content": " ",
246
+ "lstrip": false,
247
+ "normalized": true,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": false
251
+ },
252
+ "50287": {
253
+ "content": "\t\t\t\t\t\t\t\t\t",
254
+ "lstrip": false,
255
+ "normalized": true,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": false
259
+ },
260
+ "50288": {
261
+ "content": "\t\t\t\t\t\t\t\t",
262
+ "lstrip": false,
263
+ "normalized": true,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": false
267
+ },
268
+ "50289": {
269
+ "content": "\t\t\t\t\t\t\t",
270
+ "lstrip": false,
271
+ "normalized": true,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": false
275
+ },
276
+ "50290": {
277
+ "content": "\t\t\t\t\t\t",
278
+ "lstrip": false,
279
+ "normalized": true,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": false
283
+ },
284
+ "50291": {
285
+ "content": "\t\t\t\t\t",
286
+ "lstrip": false,
287
+ "normalized": true,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": false
291
+ },
292
+ "50292": {
293
+ "content": "\t\t\t\t",
294
+ "lstrip": false,
295
+ "normalized": true,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": false
299
+ },
300
+ "50293": {
301
+ "content": "\t\t\t",
302
+ "lstrip": false,
303
+ "normalized": true,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": false
307
+ },
308
+ "50294": {
309
+ "content": "\t\t",
310
+ "lstrip": false,
311
+ "normalized": true,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": false
315
+ }
316
+ },
317
+ "bos_token": "<|endoftext|>",
318
+ "clean_up_tokenization_spaces": true,
319
+ "eos_token": "<|endoftext|>",
320
+ "model_max_length": 2048,
321
+ "tokenizer_class": "CodeGenTokenizer",
322
+ "unk_token": "<|endoftext|>"
323
+ }
versions.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ 2024-03-04
2
+ 2024-03-06
3
+ 2024-03-13
4
+ 2024-04-02
5
+ 2024-05-08
6
+ 2024-05-20
7
+ 2024-07-23
vision_encoder.py ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Union
2
+
3
+ import PIL.Image
4
+ import torch
5
+ import torch.nn.functional as F
6
+ from torch import nn
7
+ from einops import rearrange
8
+ import PIL
9
+ from torchvision.transforms.v2 import (
10
+ Compose,
11
+ Resize,
12
+ InterpolationMode,
13
+ ToImage,
14
+ ToDtype,
15
+ Normalize,
16
+ )
17
+ from transformers.utils import is_flash_attn_2_available
18
+
19
+ try:
20
+ if is_flash_attn_2_available():
21
+ from flash_attn.modules.mha import FlashSelfAttention
22
+ else:
23
+ FlashSelfAttention = None
24
+ except ImportError:
25
+ FlashSelfAttention = None
26
+
27
+
28
+ class Attention(nn.Module):
29
+
30
+ def __init__(self, dim, num_heads=16, use_flash_attn=False):
31
+ super().__init__()
32
+ assert dim % num_heads == 0, "dim should be divisible by num_heads"
33
+
34
+ self.num_heads = num_heads
35
+ self.head_dim = dim // num_heads
36
+
37
+ self.qkv = nn.Linear(dim, dim * 3)
38
+ self.proj = nn.Linear(dim, dim)
39
+
40
+ if use_flash_attn and FlashSelfAttention is not None:
41
+ self.flash_attn = FlashSelfAttention()
42
+ else:
43
+ self.flash_attn = None
44
+
45
+ torch.nn.init.kaiming_normal_(
46
+ self.qkv.weight, mode="fan_in", nonlinearity="relu"
47
+ )
48
+ torch.nn.init.kaiming_normal_(
49
+ self.proj.weight, mode="fan_in", nonlinearity="relu"
50
+ )
51
+
52
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
53
+ if self.flash_attn is not None:
54
+ qkv = self.qkv(x)
55
+ qkv = rearrange(
56
+ qkv, "... (three h d) -> ... three h d", three=3, h=self.num_heads
57
+ )
58
+ attn_output = self.flash_attn(qkv)
59
+ output = rearrange(attn_output, "... h d -> ... (h d)")
60
+ output = self.proj(output)
61
+ return output
62
+ else:
63
+ B, N, C = x.shape
64
+ qkv = (
65
+ self.qkv(x)
66
+ .reshape(B, N, 3, self.num_heads, self.head_dim)
67
+ .permute(2, 0, 3, 1, 4)
68
+ )
69
+ q, k, v = qkv.unbind(0)
70
+
71
+ x = F.scaled_dot_product_attention(q, k, v)
72
+
73
+ x = x.transpose(1, 2).reshape(B, N, C)
74
+ x = self.proj(x)
75
+ return x
76
+
77
+
78
+ class VitBlock(nn.Module):
79
+
80
+ def __init__(self, embed_dim, use_flash_attn=False):
81
+ super().__init__()
82
+ self.attn = Attention(embed_dim, use_flash_attn=use_flash_attn)
83
+ self.mlp = MLP(embed_dim, 4304)
84
+ self.norm1 = nn.LayerNorm(embed_dim)
85
+ self.norm2 = nn.LayerNorm(embed_dim)
86
+
87
+ def forward(self, x):
88
+ x = x + self.attn(self.norm1(x))
89
+ x = x + self.mlp(self.norm2(x))
90
+ return x
91
+
92
+
93
+ class VisionTransformer(nn.Module):
94
+
95
+ def __init__(self, use_flash_attn=False):
96
+ super().__init__()
97
+
98
+ embed_len = 729
99
+ embed_dim = 1152
100
+
101
+ self.patch_embed = LinearPatchEmbedding()
102
+ self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02)
103
+ self.blocks = nn.Sequential(
104
+ *[VitBlock(embed_dim, use_flash_attn=use_flash_attn) for _ in range(27)]
105
+ )
106
+ self.norm = nn.LayerNorm(embed_dim)
107
+
108
+ def forward(self, x):
109
+ x = self.patch_embed(x)
110
+ x = x + self.pos_embed
111
+ for block in self.blocks:
112
+ x = block(x)
113
+ return self.norm(x)
114
+
115
+
116
+ class EncoderWrapper(nn.Module):
117
+
118
+ def __init__(self, use_flash_attn=False):
119
+ super().__init__()
120
+ self.model = nn.ModuleDict({"visual": VisionTransformer(use_flash_attn)})
121
+
122
+ def forward(self, x):
123
+ return self.model["visual"](x)
124
+
125
+
126
+ class LinearPatchEmbedding(nn.Module):
127
+
128
+ def __init__(self):
129
+ super().__init__()
130
+ self.linear = nn.Linear(588, 1152)
131
+
132
+ def forward(self, x):
133
+ b, c, hp1, wp2 = x.shape
134
+ p1, p2 = 14, 14
135
+ h, w = hp1 // p1, wp2 // p2
136
+ x = x.reshape(b, c, h, p1, w, p2)
137
+ x = x.permute(0, 2, 4, 1, 3, 5)
138
+ x = x.reshape(b, h * w, c * p1 * p2)
139
+
140
+ return self.linear(x)
141
+
142
+
143
+ class MLP(nn.Module):
144
+ def __init__(
145
+ self,
146
+ in_features: int,
147
+ hidden_features: int = None,
148
+ out_features: int = None,
149
+ ) -> None:
150
+ super().__init__()
151
+ out_features = out_features or in_features
152
+ hidden_features = hidden_features or in_features
153
+ self.fc1 = nn.Linear(in_features, hidden_features)
154
+ self.act = nn.GELU(approximate="tanh")
155
+ self.fc2 = nn.Linear(hidden_features, out_features)
156
+
157
+ torch.nn.init.kaiming_normal_(
158
+ self.fc1.weight, mode="fan_in", nonlinearity="relu"
159
+ )
160
+ torch.nn.init.kaiming_normal_(
161
+ self.fc2.weight, mode="fan_in", nonlinearity="relu"
162
+ )
163
+
164
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
165
+ x = self.fc1(x)
166
+ x = self.act(x)
167
+ x = self.fc2(x)
168
+ return x
169
+
170
+
171
+ class VisionProjection(nn.Module):
172
+ def __init__(self):
173
+ super().__init__()
174
+
175
+ image_embedding_dim = 1152
176
+ model_dim = 2048
177
+ hidden_dim = model_dim * 4
178
+
179
+ self.mlp = MLP(image_embedding_dim * 2, hidden_dim, model_dim)
180
+
181
+ @property
182
+ def device(self):
183
+ return self.mlp.fc1.weight.device
184
+
185
+ def forward(self, x):
186
+ return self.mlp(x)
187
+
188
+
189
+ def create_patches(image, patch_size=(378, 378)):
190
+ assert image.dim() == 3, "Image must be in CHW format"
191
+
192
+ _, height, width = image.shape # Channels, Height, Width
193
+ patch_height, patch_width = patch_size
194
+
195
+ if height == patch_height and width == patch_width:
196
+ return []
197
+
198
+ # Iterate over the image and create patches
199
+ patches = []
200
+ for i in range(0, height, patch_height):
201
+ row_patches = []
202
+ for j in range(0, width, patch_width):
203
+ patch = image[:, i : i + patch_height, j : j + patch_width]
204
+ row_patches.append(patch)
205
+ patches.append(torch.stack(row_patches))
206
+ return patches
207
+
208
+
209
+ class VisionEncoder(nn.Module):
210
+
211
+ def __init__(self, use_flash_attn=False):
212
+ super().__init__()
213
+
214
+ self.encoder = EncoderWrapper(use_flash_attn)
215
+ self.projection = VisionProjection()
216
+ self.supported_sizes = [(378, 378), (378, 756), (756, 378), (756, 756)]
217
+
218
+ @property
219
+ def device(self):
220
+ return self.projection.mlp.fc1.weight.device
221
+
222
+ @property
223
+ def dtype(self):
224
+ return self.projection.mlp.fc1.weight.dtype
225
+
226
+ def preprocess(self, image: PIL.Image.Image):
227
+ width, height = image.size
228
+ max_dim = max(width, height)
229
+ if max_dim < 512:
230
+ im_size = (378, 378)
231
+ else:
232
+ aspect_ratio = width / height
233
+ im_size = min(
234
+ self.supported_sizes,
235
+ key=lambda size: (
236
+ abs((size[1] / size[0]) - aspect_ratio),
237
+ abs(size[0] - width) + abs(size[1] - height),
238
+ ),
239
+ )
240
+
241
+ return Compose(
242
+ [
243
+ Resize(size=im_size, interpolation=InterpolationMode.BICUBIC),
244
+ ToImage(),
245
+ ToDtype(torch.float32, scale=True),
246
+ Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
247
+ ]
248
+ )(image)
249
+
250
+ def forward(
251
+ self, images: Union[PIL.Image.Image, list[PIL.Image.Image], torch.Tensor]
252
+ ) -> torch.Tensor:
253
+ im_list = None
254
+ if isinstance(images, torch.Tensor):
255
+ # Input must have dimensions (B, C, H, W)
256
+ assert (
257
+ len(images.shape) == 4
258
+ ), "Tensor input must have dimensions (B, C, H, W)"
259
+ im_list = list(images)
260
+ elif isinstance(images, PIL.Image.Image):
261
+ im_list = [images]
262
+ elif isinstance(images, list):
263
+ im_list = images
264
+ else:
265
+ raise ValueError(
266
+ "Input must be a PIL image, list of PIL images, or a tensor"
267
+ )
268
+
269
+ # Preprocess unless the images are already tensors (indicating that
270
+ # they have already been preprocessed)
271
+ if not isinstance(im_list[0], torch.Tensor):
272
+ im_list = [self.preprocess(im.convert("RGB")) for im in im_list]
273
+
274
+ patches = [create_patches(im) for im in im_list]
275
+ flat_patches = [patch for image_patches in patches for patch in image_patches]
276
+
277
+ # Images may be variable size, and need to be resized to a common size after
278
+ # creating patches.
279
+ resized_images = [
280
+ F.interpolate(im.unsqueeze(0), size=(378, 378), mode="bilinear")
281
+ for im in im_list
282
+ ]
283
+
284
+ combined_images = torch.cat([*resized_images, *flat_patches], dim=0)
285
+ combined_images = combined_images.to(self.device, dtype=self.dtype)
286
+
287
+ combined_features = self.encoder(combined_images)
288
+
289
+ full_img_features = combined_features[: len(im_list)]
290
+ patch_features = (
291
+ combined_features[len(im_list) :].transpose(1, 2).view(-1, 1152, 27, 27)
292
+ )
293
+
294
+ # Reshape patch features back to their original structure
295
+ reshaped_patch_features = []
296
+ patch_idx = 0
297
+ for i, patch_set in enumerate(patches):
298
+ if len(patch_set) == 0:
299
+ reshaped_patch_features.append(
300
+ full_img_features[i].transpose(0, 1).view(1152, 27, 27)
301
+ )
302
+ else:
303
+ sample_features = []
304
+ for row_patches in patch_set:
305
+ row_len = len(row_patches)
306
+ row_features = patch_features[
307
+ patch_idx : patch_idx + row_len
308
+ ] # row_len, T, C
309
+ row_features = torch.cat(
310
+ list(row_features), dim=2
311
+ ) # T, C * row_len
312
+ patch_idx += row_len
313
+ sample_features.append(row_features)
314
+ sample_features = torch.cat(sample_features, dim=1)
315
+ sample_features = F.interpolate(
316
+ sample_features.unsqueeze(0), size=(27, 27), mode="bilinear"
317
+ ).squeeze(0)
318
+ reshaped_patch_features.append(sample_features)
319
+ reshaped_patch_features = (
320
+ torch.stack(reshaped_patch_features).view(-1, 1152, 729).transpose(1, 2)
321
+ )
322
+
323
+ final_features = torch.cat([full_img_features, reshaped_patch_features], dim=2)
324
+
325
+ return self.projection(final_features)
vocab.json ADDED
The diff for this file is too large to render. See raw diff