--- license: apache-2.0 base_model: allenai/longformer-base-4096 tags: - generated_from_trainer datasets: - essays_su_g metrics: - accuracy model-index: - name: longformer-spans results: - task: name: Token Classification type: token-classification dataset: name: essays_su_g type: essays_su_g config: spans split: test args: spans metrics: - name: Accuracy type: accuracy value: 0.9421333619979219 --- # longformer-spans This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset. It achieves the following results on the evaluation set: - Loss: 0.1716 - B: {'precision': 0.8420123565754634, 'recall': 0.9008498583569405, 'f1-score': 0.8704379562043796, 'support': 1059.0} - I: {'precision': 0.9520763187429854, 'recall': 0.965348506401138, 'f1-score': 0.9586664783161464, 'support': 17575.0} - O: {'precision': 0.9350156319785619, 'recall': 0.9028571428571428, 'f1-score': 0.9186550381218803, 'support': 9275.0} - Accuracy: 0.9421 - Macro avg: {'precision': 0.9097014357656702, 'recall': 0.9230185025384072, 'f1-score': 0.9159198242141354, 'support': 27909.0} - Weighted avg: {'precision': 0.9422301900506126, 'recall': 0.9421333619979219, 'f1-score': 0.9420216643594235, 'support': 27909.0} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg | |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:| | No log | 1.0 | 41 | 0.2779 | {'precision': 0.8035190615835777, 'recall': 0.5174693106704438, 'f1-score': 0.6295232624928202, 'support': 1059.0} | {'precision': 0.9134303762702555, 'recall': 0.9461735419630156, 'f1-score': 0.9295136948015652, 'support': 17575.0} | {'precision': 0.8836178230990911, 'recall': 0.8595148247978437, 'f1-score': 0.8713996830081434, 'support': 9275.0} | 0.9011 | {'precision': 0.8668557536509748, 'recall': 0.7743858924771011, 'f1-score': 0.8101455467675095, 'support': 27909.0} | {'precision': 0.8993522110577526, 'recall': 0.9011071697301946, 'f1-score': 0.8988175993771879, 'support': 27909.0} | | No log | 2.0 | 82 | 0.1973 | {'precision': 0.8130590339892666, 'recall': 0.8583569405099151, 'f1-score': 0.8350941662838769, 'support': 1059.0} | {'precision': 0.9326064325242452, 'recall': 0.9684779516358464, 'f1-score': 0.9502037626304918, 'support': 17575.0} | {'precision': 0.9385245901639344, 'recall': 0.8641509433962264, 'f1-score': 0.899803536345776, 'support': 9275.0} | 0.9296 | {'precision': 0.8947300188924822, 'recall': 0.896995278513996, 'f1-score': 0.8950338217533815, 'support': 27909.0} | {'precision': 0.9300370182514147, 'recall': 0.9296284352717761, 'f1-score': 0.9290864470218421, 'support': 27909.0} | | No log | 3.0 | 123 | 0.1836 | {'precision': 0.788197251414713, 'recall': 0.9206798866855525, 'f1-score': 0.8493031358885017, 'support': 1059.0} | {'precision': 0.938334252619967, 'recall': 0.9679658605974395, 'f1-score': 0.9529197591373757, 'support': 17575.0} | {'precision': 0.943807070943573, 'recall': 0.8692183288409704, 'f1-score': 0.904978391423921, 'support': 9275.0} | 0.9334 | {'precision': 0.8901128583260842, 'recall': 0.9192880253746541, 'f1-score': 0.9024004288165995, 'support': 27909.0} | {'precision': 0.9344561239043228, 'recall': 0.9333548317746964, 'f1-score': 0.9330556941560847, 'support': 27909.0} | | No log | 4.0 | 164 | 0.1709 | {'precision': 0.8227739726027398, 'recall': 0.9074598677998111, 'f1-score': 0.8630444544229906, 'support': 1059.0} | {'precision': 0.9512620158524931, 'recall': 0.9628449502133712, 'f1-score': 0.9570184368284129, 'support': 17575.0} | {'precision': 0.9324173369079535, 'recall': 0.8999460916442048, 'f1-score': 0.9158940034015471, 'support': 9275.0} | 0.9398 | {'precision': 0.9021511084543955, 'recall': 0.9234169698857958, 'f1-score': 0.9119856315509836, 'support': 27909.0} | {'precision': 0.9401239157768152, 'recall': 0.9398401949192017, 'f1-score': 0.9397857317009801, 'support': 27909.0} | | No log | 5.0 | 205 | 0.1695 | {'precision': 0.8363954505686789, 'recall': 0.902738432483475, 'f1-score': 0.8683015440508628, 'support': 1059.0} | {'precision': 0.9477175185329691, 'recall': 0.9674537695590327, 'f1-score': 0.9574839508953711, 'support': 17575.0} | {'precision': 0.9385835694050991, 'recall': 0.8930458221024259, 'f1-score': 0.9152486187845303, 'support': 9275.0} | 0.9403 | {'precision': 0.9075655128355824, 'recall': 0.9210793413816445, 'f1-score': 0.9136780379102548, 'support': 27909.0} | {'precision': 0.9404579446272334, 'recall': 0.9402701637464617, 'f1-score': 0.9400638758594909, 'support': 27909.0} | | No log | 6.0 | 246 | 0.1716 | {'precision': 0.8420123565754634, 'recall': 0.9008498583569405, 'f1-score': 0.8704379562043796, 'support': 1059.0} | {'precision': 0.9520763187429854, 'recall': 0.965348506401138, 'f1-score': 0.9586664783161464, 'support': 17575.0} | {'precision': 0.9350156319785619, 'recall': 0.9028571428571428, 'f1-score': 0.9186550381218803, 'support': 9275.0} | 0.9421 | {'precision': 0.9097014357656702, 'recall': 0.9230185025384072, 'f1-score': 0.9159198242141354, 'support': 27909.0} | {'precision': 0.9422301900506126, 'recall': 0.9421333619979219, 'f1-score': 0.9420216643594235, 'support': 27909.0} | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2