Theoreticallyhugo
commited on
Commit
•
6ac2549
1
Parent(s):
3329be0
trainer: training complete at 2024-03-04 05:54:14.776648.
Browse files- README.md +61 -61
- meta_data/README_s42_e50.md +61 -61
README.md
CHANGED
@@ -17,12 +17,12 @@ model-index:
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: spans
|
20 |
-
split: train[
|
21 |
args: spans
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,13 +32,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- B: {'precision': 0.
|
37 |
-
- I: {'precision': 0.
|
38 |
-
- O: {'precision': 0.
|
39 |
-
- Accuracy: 0.
|
40 |
-
- Macro avg: {'precision': 0.
|
41 |
-
- Weighted avg: {'precision': 0.
|
42 |
|
43 |
## Model description
|
44 |
|
@@ -67,58 +67,58 @@ The following hyperparameters were used during training:
|
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
-
| Training Loss | Epoch | Step | Validation Loss | B | I | O
|
71 |
-
|
72 |
-
| No log | 1.0 | 81 | 0.
|
73 |
-
| No log | 2.0 | 162 | 0.
|
74 |
-
| No log | 3.0 | 243 | 0.
|
75 |
-
| No log | 4.0 | 324 | 0.
|
76 |
-
| No log | 5.0 | 405 | 0.
|
77 |
-
| No log | 6.0 | 486 | 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
|
123 |
|
124 |
### Framework versions
|
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: spans
|
20 |
+
split: train[60%:80%]
|
21 |
args: spans
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.9446567164179105
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4964
|
36 |
+
- B: {'precision': 0.8815165876777251, 'recall': 0.9041666666666667, 'f1-score': 0.8926979773740144, 'support': 1440.0}
|
37 |
+
- I: {'precision': 0.9563064508734125, 'recall': 0.9662296752675221, 'f1-score': 0.9612424535692888, 'support': 21587.0}
|
38 |
+
- O: {'precision': 0.9289071680376029, 'recall': 0.9057576625608708, 'f1-score': 0.9171863669325598, 'support': 10473.0}
|
39 |
+
- Accuracy: 0.9447
|
40 |
+
- Macro avg: {'precision': 0.9222434021962469, 'recall': 0.9253846681650199, 'f1-score': 0.9237089326252876, 'support': 33500.0}
|
41 |
+
- Weighted avg: {'precision': 0.9445258511080028, 'recall': 0.9446567164179105, 'f1-score': 0.9445229478657765, 'support': 33500.0}
|
42 |
|
43 |
## Model description
|
44 |
|
|
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
+
| Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg |
|
71 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
72 |
+
| No log | 1.0 | 81 | 0.3293 | {'precision': 0.7768096514745308, 'recall': 0.8048611111111111, 'f1-score': 0.7905866302864938, 'support': 1440.0} | {'precision': 0.9637593111099372, 'recall': 0.8450919534905267, 'f1-score': 0.9005331227169513, 'support': 21587.0} | {'precision': 0.7463108800367001, 'recall': 0.9320156593144275, 'f1-score': 0.8288892663043479, 'support': 10473.0} | 0.8705 | {'precision': 0.8289599475403894, 'recall': 0.8606562413053552, 'f1-score': 0.8400030064359308, 'support': 33500.0} | {'precision': 0.8877430445874, 'recall': 0.8705373134328358, 'f1-score': 0.8734092702599646, 'support': 33500.0} |
|
73 |
+
| No log | 2.0 | 162 | 0.2162 | {'precision': 0.8325849903784477, 'recall': 0.9013888888888889, 'f1-score': 0.8656218739579861, 'support': 1440.0} | {'precision': 0.9423736462093862, 'recall': 0.9673877796822161, 'f1-score': 0.9547168948727912, 'support': 21587.0} | {'precision': 0.9332379102341274, 'recall': 0.8715745249689678, 'f1-score': 0.9013528191962081, 'support': 10473.0} | 0.9346 | {'precision': 0.902732182273987, 'recall': 0.9134503978466909, 'f1-score': 0.9072305293423284, 'support': 33500.0} | {'precision': 0.9347982961417612, 'recall': 0.9345970149253732, 'f1-score': 0.9342040950316517, 'support': 33500.0} |
|
74 |
+
| No log | 3.0 | 243 | 0.2408 | {'precision': 0.8717034925160371, 'recall': 0.8493055555555555, 'f1-score': 0.8603587759409076, 'support': 1440.0} | {'precision': 0.9677057963955188, 'recall': 0.9203224162690509, 'f1-score': 0.9434195218082959, 'support': 21587.0} | {'precision': 0.8459410391631365, 'recall': 0.9343072663038289, 'f1-score': 0.8879310344827586, 'support': 10473.0} | 0.9216 | {'precision': 0.8951167760248975, 'recall': 0.9013117460428117, 'f1-score': 0.8972364440773206, 'support': 33500.0} | {'precision': 0.9255121957960801, 'recall': 0.9216417910447762, 'f1-score': 0.9225019575751797, 'support': 33500.0} |
|
75 |
+
| No log | 4.0 | 324 | 0.2208 | {'precision': 0.8504854368932039, 'recall': 0.9125, 'f1-score': 0.8804020100502512, 'support': 1440.0} | {'precision': 0.945595388218339, 'recall': 0.9726224116366332, 'f1-score': 0.9589184992350025, 'support': 21587.0} | {'precision': 0.9427750999897446, 'recall': 0.877780960565263, 'f1-score': 0.9091178797468354, 'support': 10473.0} | 0.9404 | {'precision': 0.9129519750337626, 'recall': 0.9209677907339654, 'f1-score': 0.9161461296773631, 'support': 33500.0} | {'precision': 0.9406253819936745, 'recall': 0.9403880597014925, 'f1-score': 0.9399744505088647, 'support': 33500.0} |
|
76 |
+
| No log | 5.0 | 405 | 0.2258 | {'precision': 0.8736559139784946, 'recall': 0.9027777777777778, 'f1-score': 0.8879781420765027, 'support': 1440.0} | {'precision': 0.9539317642765919, 'recall': 0.9688238291564367, 'f1-score': 0.9613201259451634, 'support': 21587.0} | {'precision': 0.9334853291038858, 'recall': 0.899169292466342, 'f1-score': 0.916006030835076, 'support': 10473.0} | 0.9442 | {'precision': 0.9203576691196576, 'recall': 0.9235902998001855, 'f1-score': 0.921768099618914, 'support': 33500.0} | {'precision': 0.9440889959185916, 'recall': 0.9442089552238806, 'f1-score': 0.9440011117702735, 'support': 33500.0} |
|
77 |
+
| No log | 6.0 | 486 | 0.2242 | {'precision': 0.8803827751196173, 'recall': 0.8944444444444445, 'f1-score': 0.8873579056148813, 'support': 1440.0} | {'precision': 0.9539267015706806, 'recall': 0.9706304720433594, 'f1-score': 0.9622060984570168, 'support': 21587.0} | {'precision': 0.9365567911040509, 'recall': 0.9006970304592762, 'f1-score': 0.9182769530299342, 'support': 10473.0} | 0.9455 | {'precision': 0.923622089264783, 'recall': 0.9219239823156933, 'f1-score': 0.9226136523672773, 'support': 33500.0} | {'precision': 0.9453351097376493, 'recall': 0.9454925373134329, 'f1-score': 0.945255312255509, 'support': 33500.0} |
|
78 |
+
| 0.1601 | 7.0 | 567 | 0.2252 | {'precision': 0.8730691739422431, 'recall': 0.9027777777777778, 'f1-score': 0.8876749743939911, 'support': 1440.0} | {'precision': 0.9581108451482232, 'recall': 0.9641914114976606, 'f1-score': 0.9611415113943341, 'support': 21587.0} | {'precision': 0.9247594050743657, 'recall': 0.9083357204239473, 'f1-score': 0.9164739884393064, 'support': 10473.0} | 0.9441 | {'precision': 0.9186464747216107, 'recall': 0.9251016365664619, 'f1-score': 0.9217634914092105, 'support': 33500.0} | {'precision': 0.9440287663891153, 'recall': 0.944089552238806, 'f1-score': 0.9440192791200506, 'support': 33500.0} |
|
79 |
+
| 0.1601 | 8.0 | 648 | 0.2487 | {'precision': 0.8740888005301524, 'recall': 0.9159722222222222, 'f1-score': 0.894540522210919, 'support': 1440.0} | {'precision': 0.9540255968049378, 'recall': 0.9737805160513272, 'f1-score': 0.9638018385639943, 'support': 21587.0} | {'precision': 0.9441598875163202, 'recall': 0.8976415544734078, 'f1-score': 0.9203132648066569, 'support': 10473.0} | 0.9475 | {'precision': 0.9240914282838034, 'recall': 0.9291314309156524, 'f1-score': 0.9262185418605234, 'support': 33500.0} | {'precision': 0.9475052218791054, 'recall': 0.9474925373134329, 'f1-score': 0.947228939205516, 'support': 33500.0} |
|
80 |
+
| 0.1601 | 9.0 | 729 | 0.3045 | {'precision': 0.8643282594308405, 'recall': 0.9069444444444444, 'f1-score': 0.8851236868858015, 'support': 1440.0} | {'precision': 0.9540067462849849, 'recall': 0.9695186918052532, 'f1-score': 0.9617001723147618, 'support': 21587.0} | {'precision': 0.9358272808675754, 'recall': 0.8981189725961998, 'f1-score': 0.9165854609237966, 'support': 10473.0} | 0.9445 | {'precision': 0.9180540955278002, 'recall': 0.9248607029486324, 'f1-score': 0.9211364400414532, 'support': 33500.0} | {'precision': 0.9444685205421044, 'recall': 0.9445074626865672, 'f1-score': 0.9443044555560967, 'support': 33500.0} |
|
81 |
+
| 0.1601 | 10.0 | 810 | 0.3263 | {'precision': 0.8695945945945946, 'recall': 0.89375, 'f1-score': 0.8815068493150685, 'support': 1440.0} | {'precision': 0.9660159757999717, 'recall': 0.9467735211006625, 'f1-score': 0.956297959947595, 'support': 21587.0} | {'precision': 0.8937678357728068, 'recall': 0.9270505108373914, 'f1-score': 0.9101049868766404, 'support': 10473.0} | 0.9383 | {'precision': 0.909792802055791, 'recall': 0.9225246773126846, 'f1-score': 0.9159699320464346, 'support': 33500.0} | {'precision': 0.9392845859659347, 'recall': 0.9383283582089552, 'f1-score': 0.9386418940884026, 'support': 33500.0} |
|
82 |
+
| 0.1601 | 11.0 | 891 | 0.3124 | {'precision': 0.8831168831168831, 'recall': 0.8972222222222223, 'f1-score': 0.8901136755080951, 'support': 1440.0} | {'precision': 0.9535359970874671, 'recall': 0.9706304720433594, 'f1-score': 0.9620073001078947, 'support': 21587.0} | {'precision': 0.9361025539103647, 'recall': 0.8994557433400172, 'f1-score': 0.917413322945072, 'support': 10473.0} | 0.9452 | {'precision': 0.9242518113715716, 'recall': 0.922436145868533, 'f1-score': 0.9231780995203539, 'support': 33500.0} | {'precision': 0.9450588635199616, 'recall': 0.9452238805970149, 'f1-score': 0.9449756719810304, 'support': 33500.0} |
|
83 |
+
| 0.1601 | 12.0 | 972 | 0.3427 | {'precision': 0.8661735036987223, 'recall': 0.8944444444444445, 'f1-score': 0.8800819952169457, 'support': 1440.0} | {'precision': 0.9512039692293687, 'recall': 0.9680363181544448, 'f1-score': 0.9595463311598861, 'support': 21587.0} | {'precision': 0.9310035842293907, 'recall': 0.8928673732454884, 'f1-score': 0.9115367743822197, 'support': 10473.0} | 0.9414 | {'precision': 0.9161270190524938, 'recall': 0.9184493786147926, 'f1-score': 0.9170550335863505, 'support': 33500.0} | {'precision': 0.9412337452750731, 'recall': 0.9413731343283582, 'f1-score': 0.9411214734915179, 'support': 33500.0} |
|
84 |
+
| 0.0222 | 13.0 | 1053 | 0.3817 | {'precision': 0.8704318936877077, 'recall': 0.9097222222222222, 'f1-score': 0.8896434634974534, 'support': 1440.0} | {'precision': 0.9556591698665204, 'recall': 0.9684532357437347, 'f1-score': 0.9620136667970457, 'support': 21587.0} | {'precision': 0.9343808676746714, 'recall': 0.9027976701995608, 'f1-score': 0.9183177933177933, 'support': 10473.0} | 0.9454 | {'precision': 0.9201573104096331, 'recall': 0.9269910427218392, 'f1-score': 0.9233249745374308, 'support': 33500.0} | {'precision': 0.9453435001186778, 'recall': 0.9454029850746268, 'f1-score': 0.945242324238848, 'support': 33500.0} |
|
85 |
+
| 0.0222 | 14.0 | 1134 | 0.3827 | {'precision': 0.8754231550440081, 'recall': 0.8979166666666667, 'f1-score': 0.8865272540281112, 'support': 1440.0} | {'precision': 0.9557331129172981, 'recall': 0.9641450873210728, 'f1-score': 0.9599206715247671, 'support': 21587.0} | {'precision': 0.9242631270739801, 'recall': 0.9042299245679366, 'f1-score': 0.9141367826632559, 'support': 10473.0} | 0.9426 | {'precision': 0.9184731316784287, 'recall': 0.9220972261852255, 'f1-score': 0.9201949027387114, 'support': 33500.0} | {'precision': 0.9424426203479068, 'recall': 0.9425671641791045, 'f1-score': 0.9424525763235196, 'support': 33500.0} |
|
86 |
+
| 0.0222 | 15.0 | 1215 | 0.3902 | {'precision': 0.8868841082581541, 'recall': 0.8875, 'f1-score': 0.8871919472405415, 'support': 1440.0} | {'precision': 0.9571841585975862, 'recall': 0.9662296752675221, 'f1-score': 0.9616856471022177, 'support': 21587.0} | {'precision': 0.9273470977795092, 'recall': 0.9091950730449728, 'f1-score': 0.9181813798756087, 'support': 10473.0} | 0.9450 | {'precision': 0.9238051215450831, 'recall': 0.920974916104165, 'f1-score': 0.9223529914061226, 'support': 33500.0} | {'precision': 0.9448344388830637, 'recall': 0.9450149253731344, 'f1-score': 0.944882927148036, 'support': 33500.0} |
|
87 |
+
| 0.0222 | 16.0 | 1296 | 0.4009 | {'precision': 0.8857536132140399, 'recall': 0.89375, 'f1-score': 0.8897338403041825, 'support': 1440.0} | {'precision': 0.9570693142121713, 'recall': 0.9645620049103627, 'f1-score': 0.9608010520729992, 'support': 21587.0} | {'precision': 0.9240112719852298, 'recall': 0.9079537859257137, 'f1-score': 0.9159121556540166, 'support': 10473.0} | 0.9438 | {'precision': 0.9222780664704805, 'recall': 0.9220885969453588, 'f1-score': 0.9221490160103993, 'support': 33500.0} | {'precision': 0.9436689713560499, 'recall': 0.943820895522388, 'f1-score': 0.9437127476806678, 'support': 33500.0} |
|
88 |
+
| 0.0222 | 17.0 | 1377 | 0.4279 | {'precision': 0.89198606271777, 'recall': 0.8888888888888888, 'f1-score': 0.8904347826086957, 'support': 1440.0} | {'precision': 0.9589034784611841, 'recall': 0.9641450873210728, 'f1-score': 0.9615171394252979, 'support': 21587.0} | {'precision': 0.9232625482625483, 'recall': 0.9133008689009835, 'f1-score': 0.9182546920750733, 'support': 10473.0} | 0.9450 | {'precision': 0.9247173631471673, 'recall': 0.9221116150369818, 'f1-score': 0.9234022047030224, 'support': 33500.0} | {'precision': 0.9448847160539952, 'recall': 0.9450149253731344, 'f1-score': 0.9449366556964975, 'support': 33500.0} |
|
89 |
+
| 0.0222 | 18.0 | 1458 | 0.4226 | {'precision': 0.8846153846153846, 'recall': 0.8944444444444445, 'f1-score': 0.8895027624309393, 'support': 1440.0} | {'precision': 0.9555912007332722, 'recall': 0.9659054060314078, 'f1-score': 0.9607206210979795, 'support': 21587.0} | {'precision': 0.9271322378716745, 'recall': 0.905089277188962, 'f1-score': 0.9159781610861478, 'support': 10473.0} | 0.9438 | {'precision': 0.9224462744067772, 'recall': 0.9218130425549381, 'f1-score': 0.9220671815383555, 'support': 33500.0} | {'precision': 0.9436432636210552, 'recall': 0.943820895522388, 'f1-score': 0.9436716210924735, 'support': 33500.0} |
|
90 |
+
| 0.0054 | 19.0 | 1539 | 0.4376 | {'precision': 0.8890420399724328, 'recall': 0.8958333333333334, 'f1-score': 0.8924247665167762, 'support': 1440.0} | {'precision': 0.959121387283237, 'recall': 0.9608097466067541, 'f1-score': 0.9599648245857633, 'support': 21587.0} | {'precision': 0.9179777436684574, 'recall': 0.913682803399217, 'f1-score': 0.9158252380724505, 'support': 10473.0} | 0.9433 | {'precision': 0.9220470569747091, 'recall': 0.9234419611131015, 'f1-score': 0.9227382763916633, 'support': 33500.0} | {'precision': 0.9432464129636805, 'recall': 0.9432835820895522, 'f1-score': 0.9432623895656658, 'support': 33500.0} |
|
91 |
+
| 0.0054 | 20.0 | 1620 | 0.4444 | {'precision': 0.8843258042436687, 'recall': 0.8972222222222223, 'f1-score': 0.8907273354015857, 'support': 1440.0} | {'precision': 0.9520958083832335, 'recall': 0.972251818223931, 'f1-score': 0.9620682542229149, 'support': 21587.0} | {'precision': 0.9396698349174587, 'recall': 0.8967822018523823, 'f1-score': 0.9177252296267345, 'support': 10473.0} | 0.9454 | {'precision': 0.9253638158481202, 'recall': 0.922085414099512, 'f1-score': 0.9235069397504118, 'support': 33500.0} | {'precision': 0.9452980165603072, 'recall': 0.9454328358208955, 'f1-score': 0.9451388387095264, 'support': 33500.0} |
|
92 |
+
| 0.0054 | 21.0 | 1701 | 0.4363 | {'precision': 0.8784604996623903, 'recall': 0.9034722222222222, 'f1-score': 0.890790825059911, 'support': 1440.0} | {'precision': 0.9533284764593388, 'recall': 0.9698892852179553, 'f1-score': 0.9615375783600082, 'support': 21587.0} | {'precision': 0.9351695336581486, 'recall': 0.8980234889716414, 'f1-score': 0.9162201656113005, 'support': 10473.0} | 0.9446 | {'precision': 0.9223195032599593, 'recall': 0.9237949988039397, 'f1-score': 0.9228495230104065, 'support': 33500.0} | {'precision': 0.9444332975177129, 'recall': 0.9445671641791045, 'f1-score': 0.9443290831818184, 'support': 33500.0} |
|
93 |
+
| 0.0054 | 22.0 | 1782 | 0.3998 | {'precision': 0.8816326530612245, 'recall': 0.9, 'f1-score': 0.8907216494845361, 'support': 1440.0} | {'precision': 0.9588801399825022, 'recall': 0.9646546532635383, 'f1-score': 0.961758728985775, 'support': 21587.0} | {'precision': 0.9258217783380199, 'recall': 0.9116776472834909, 'f1-score': 0.9186952756663139, 'support': 10473.0} | 0.9453 | {'precision': 0.9221115237939155, 'recall': 0.925444100182343, 'f1-score': 0.9237252180455416, 'support': 33500.0} | {'precision': 0.9452247190072991, 'recall': 0.9453134328358209, 'f1-score': 0.9452424023858794, 'support': 33500.0} |
|
94 |
+
| 0.0054 | 23.0 | 1863 | 0.4420 | {'precision': 0.8765020026702269, 'recall': 0.9118055555555555, 'f1-score': 0.8938053097345132, 'support': 1440.0} | {'precision': 0.9584770313146641, 'recall': 0.9655811367952934, 'f1-score': 0.9620159689850926, 'support': 21587.0} | {'precision': 0.9284251584592882, 'recall': 0.9090995894204144, 'f1-score': 0.918660748745658, 'support': 10473.0} | 0.9456 | {'precision': 0.9211347308147264, 'recall': 0.9288287605904211, 'f1-score': 0.9248273424884212, 'support': 33500.0} | {'precision': 0.9455583057725045, 'recall': 0.9456119402985075, 'f1-score': 0.9455299220929005, 'support': 33500.0} |
|
95 |
+
| 0.0054 | 24.0 | 1944 | 0.4822 | {'precision': 0.8830290736984449, 'recall': 0.9069444444444444, 'f1-score': 0.89482699554642, 'support': 1440.0} | {'precision': 0.9544605005242285, 'recall': 0.969935609394543, 'f1-score': 0.962135833103575, 'support': 21587.0} | {'precision': 0.9362356207854026, 'recall': 0.9014608994557434, 'f1-score': 0.9185192391885975, 'support': 10473.0} | 0.9458 | {'precision': 0.924575065002692, 'recall': 0.9261136510982436, 'f1-score': 0.9251606892795309, 'support': 33500.0} | {'precision': 0.945692428281427, 'recall': 0.945820895522388, 'f1-score': 0.9456068386512209, 'support': 33500.0} |
|
96 |
+
| 0.0037 | 25.0 | 2025 | 0.4624 | {'precision': 0.8812628689087165, 'recall': 0.8916666666666667, 'f1-score': 0.8864342423196411, 'support': 1440.0} | {'precision': 0.9537320946409775, 'recall': 0.9653958400889424, 'f1-score': 0.9595285234126801, 'support': 21587.0} | {'precision': 0.9255298273155416, 'recall': 0.9006970304592762, 'f1-score': 0.9129445923058311, 'support': 10473.0} | 0.942 | {'precision': 0.9201749302884119, 'recall': 0.9192531790716284, 'f1-score': 0.9196357860127174, 'support': 33500.0} | {'precision': 0.9418002131259403, 'recall': 0.942, 'f1-score': 0.941823171912501, 'support': 33500.0} |
|
97 |
+
| 0.0037 | 26.0 | 2106 | 0.4685 | {'precision': 0.8809201623815968, 'recall': 0.9041666666666667, 'f1-score': 0.892392049348869, 'support': 1440.0} | {'precision': 0.9556420233463035, 'recall': 0.9670635104461018, 'f1-score': 0.9613188432492171, 'support': 21587.0} | {'precision': 0.9306278864105335, 'recall': 0.904325408192495, 'f1-score': 0.9172881355932202, 'support': 10473.0} | 0.9447 | {'precision': 0.9223966907128114, 'recall': 0.9251851951017546, 'f1-score': 0.9236663427304355, 'support': 33500.0} | {'precision': 0.9446100073487664, 'recall': 0.9447462686567164, 'f1-score': 0.9445908377418215, 'support': 33500.0} |
|
98 |
+
| 0.0037 | 27.0 | 2187 | 0.5011 | {'precision': 0.882111034955449, 'recall': 0.89375, 'f1-score': 0.8878923766816142, 'support': 1440.0} | {'precision': 0.9467098748762265, 'recall': 0.9743827303469681, 'f1-score': 0.9603469923524712, 'support': 21587.0} | {'precision': 0.943398147205538, 'recall': 0.8848467487825837, 'f1-score': 0.9131848640126133, 'support': 10473.0} | 0.9429 | {'precision': 0.9240730190124045, 'recall': 0.9176598263765173, 'f1-score': 0.9204747443488995, 'support': 33500.0} | {'precision': 0.9428977538797776, 'recall': 0.9429253731343283, 'f1-score': 0.942488376929505, 'support': 33500.0} |
|
99 |
+
| 0.0037 | 28.0 | 2268 | 0.4657 | {'precision': 0.8817934782608695, 'recall': 0.9013888888888889, 'f1-score': 0.8914835164835164, 'support': 1440.0} | {'precision': 0.9618175053483397, 'recall': 0.9580302960114884, 'f1-score': 0.9599201652393882, 'support': 21587.0} | {'precision': 0.9141174235227056, 'recall': 0.9187434355008116, 'f1-score': 0.9164245916472212, 'support': 10473.0} | 0.9433 | {'precision': 0.919242802377305, 'recall': 0.9260542068003962, 'f1-score': 0.9226094244567086, 'support': 33500.0} | {'precision': 0.9434653394986137, 'recall': 0.9433134328358209, 'f1-score': 0.9433805259426951, 'support': 33500.0} |
|
100 |
+
| 0.0037 | 29.0 | 2349 | 0.4543 | {'precision': 0.8623141564318035, 'recall': 0.9263888888888889, 'f1-score': 0.8932038834951457, 'support': 1440.0} | {'precision': 0.9559099867088318, 'recall': 0.9661833510909343, 'f1-score': 0.9610192139335576, 'support': 21587.0} | {'precision': 0.9318136964673377, 'recall': 0.9016518667048601, 'f1-score': 0.9164846896685592, 'support': 10473.0} | 0.9443 | {'precision': 0.9166792798693243, 'recall': 0.931408035561561, 'f1-score': 0.9235692623657542, 'support': 33500.0} | {'precision': 0.9443536152670977, 'recall': 0.9442985074626866, 'f1-score': 0.9441814781586727, 'support': 33500.0} |
|
101 |
+
| 0.0037 | 30.0 | 2430 | 0.4872 | {'precision': 0.8794373744139317, 'recall': 0.9118055555555555, 'f1-score': 0.8953290146607569, 'support': 1440.0} | {'precision': 0.9528786295269687, 'recall': 0.9714179830453513, 'f1-score': 0.9620589989448088, 'support': 21587.0} | {'precision': 0.9394, 'recall': 0.896973169101499, 'f1-score': 0.9176964782884776, 'support': 10473.0} | 0.9456 | {'precision': 0.9239053346469669, 'recall': 0.926732235900802, 'f1-score': 0.9250281639646811, 'support': 33500.0} | {'precision': 0.9455079699926786, 'recall': 0.9455820895522388, 'f1-score': 0.945321689804427, 'support': 33500.0} |
|
102 |
+
| 0.0025 | 31.0 | 2511 | 0.4678 | {'precision': 0.8791581805838425, 'recall': 0.8993055555555556, 'f1-score': 0.8891177480260899, 'support': 1440.0} | {'precision': 0.9535978787601719, 'recall': 0.9662759994441099, 'f1-score': 0.9598950783461034, 'support': 21587.0} | {'precision': 0.9281000689451394, 'recall': 0.8997421942136924, 'f1-score': 0.9137011538834482, 'support': 10473.0} | 0.9426 | {'precision': 0.9202853760963846, 'recall': 0.9217745830711194, 'f1-score': 0.9209046600852139, 'support': 33500.0} | {'precision': 0.9424267824148957, 'recall': 0.9425970149253732, 'f1-score': 0.9424112477025748, 'support': 33500.0} |
|
103 |
+
| 0.0025 | 32.0 | 2592 | 0.4877 | {'precision': 0.8766101694915254, 'recall': 0.8979166666666667, 'f1-score': 0.8871355060034306, 'support': 1440.0} | {'precision': 0.9538848263254114, 'recall': 0.966831889563163, 'f1-score': 0.9603147215128719, 'support': 21587.0} | {'precision': 0.9292262198127156, 'recall': 0.9001241287119259, 'f1-score': 0.9144436899796294, 'support': 10473.0} | 0.9430 | {'precision': 0.9199070718765507, 'recall': 0.9216242283139185, 'f1-score': 0.9206313058319773, 'support': 33500.0} | {'precision': 0.942854226568747, 'recall': 0.9430149253731344, 'f1-score': 0.9428285906597003, 'support': 33500.0} |
|
104 |
+
| 0.0025 | 33.0 | 2673 | 0.4951 | {'precision': 0.8712674187126742, 'recall': 0.9118055555555555, 'f1-score': 0.8910756701730572, 'support': 1440.0} | {'precision': 0.9516713470423046, 'recall': 0.9733172742854496, 'f1-score': 0.9623726096415894, 'support': 21587.0} | {'precision': 0.9435199193141705, 'recall': 0.8932493077437219, 'f1-score': 0.9176966843241121, 'support': 10473.0} | 0.9456 | {'precision': 0.9221528950230496, 'recall': 0.9261240458615757, 'f1-score': 0.9237149880462528, 'support': 33500.0} | {'precision': 0.9456668228813668, 'recall': 0.9456417910447761, 'f1-score': 0.9453410108748842, 'support': 33500.0} |
|
105 |
+
| 0.0025 | 34.0 | 2754 | 0.4796 | {'precision': 0.8743351063829787, 'recall': 0.9131944444444444, 'f1-score': 0.8933423913043478, 'support': 1440.0} | {'precision': 0.9546159459952563, 'recall': 0.9695186918052532, 'f1-score': 0.9620096067661051, 'support': 21587.0} | {'precision': 0.9362589356632248, 'recall': 0.9004105795856011, 'f1-score': 0.9179849111706012, 'support': 10473.0} | 0.9455 | {'precision': 0.9217366626804866, 'recall': 0.9277079052784329, 'f1-score': 0.9244456364136847, 'support': 33500.0} | {'precision': 0.9454261735102102, 'recall': 0.9454925373134329, 'f1-score': 0.9452946387888919, 'support': 33500.0} |
|
106 |
+
| 0.0025 | 35.0 | 2835 | 0.4806 | {'precision': 0.878213802435724, 'recall': 0.9013888888888889, 'f1-score': 0.8896504455106238, 'support': 1440.0} | {'precision': 0.9520805917320869, 'recall': 0.9719275489878167, 'f1-score': 0.9619017054832203, 'support': 21587.0} | {'precision': 0.9400100150225338, 'recall': 0.896209300105032, 'f1-score': 0.917587251930785, 'support': 10473.0} | 0.9452 | {'precision': 0.9234348030634482, 'recall': 0.9231752459939125, 'f1-score': 0.923046467641543, 'support': 33500.0} | {'precision': 0.9451318357181789, 'recall': 0.9452238805970149, 'f1-score': 0.9449420909633638, 'support': 33500.0} |
|
107 |
+
| 0.0025 | 36.0 | 2916 | 0.4833 | {'precision': 0.8815165876777251, 'recall': 0.9041666666666667, 'f1-score': 0.8926979773740144, 'support': 1440.0} | {'precision': 0.9559374714324893, 'recall': 0.9688238291564367, 'f1-score': 0.9623375129414473, 'support': 21587.0} | {'precision': 0.9339576145884673, 'recall': 0.9047073426907285, 'f1-score': 0.9190998156950239, 'support': 10473.0} | 0.946 | {'precision': 0.923803891232894, 'recall': 0.9258992795046107, 'f1-score': 0.9247117686701619, 'support': 33500.0} | {'precision': 0.9458669904374355, 'recall': 0.946, 'f1-score': 0.9458267865390921, 'support': 33500.0} |
|
108 |
+
| 0.0025 | 37.0 | 2997 | 0.4824 | {'precision': 0.8831967213114754, 'recall': 0.8979166666666667, 'f1-score': 0.8904958677685951, 'support': 1440.0} | {'precision': 0.9560696289509849, 'recall': 0.966831889563163, 'f1-score': 0.9614206416841329, 'support': 21587.0} | {'precision': 0.9296492259455222, 'recall': 0.9059486298099876, 'f1-score': 0.9176459209826394, 'support': 10473.0} | 0.9448 | {'precision': 0.9229718587359942, 'recall': 0.9235657286799391, 'f1-score': 0.9231874768117891, 'support': 33500.0} | {'precision': 0.9446774537964444, 'recall': 0.9448358208955224, 'f1-score': 0.9446867812559204, 'support': 33500.0} |
|
109 |
+
| 0.0016 | 38.0 | 3078 | 0.4953 | {'precision': 0.8720159151193634, 'recall': 0.9131944444444444, 'f1-score': 0.8921302578018996, 'support': 1440.0} | {'precision': 0.9529192772178334, 'recall': 0.9722981424005188, 'f1-score': 0.9625111778598124, 'support': 21587.0} | {'precision': 0.9420028095524784, 'recall': 0.8964002673541488, 'f1-score': 0.9186359410930084, 'support': 10473.0} | 0.9460 | {'precision': 0.9223126672965584, 'recall': 0.9272976180663707, 'f1-score': 0.9244257922515735, 'support': 33500.0} | {'precision': 0.9460288590900406, 'recall': 0.9460298507462687, 'f1-score': 0.9457692710078085, 'support': 33500.0} |
|
110 |
+
| 0.0016 | 39.0 | 3159 | 0.4956 | {'precision': 0.8796484110885734, 'recall': 0.9034722222222222, 'f1-score': 0.8914011647824598, 'support': 1440.0} | {'precision': 0.9533817521561507, 'recall': 0.9729466808727475, 'f1-score': 0.9630648600316389, 'support': 21587.0} | {'precision': 0.9421479331398258, 'recall': 0.8987873579681085, 'f1-score': 0.9199569976544176, 'support': 10473.0} | 0.9468 | {'precision': 0.9250593654615167, 'recall': 0.9250687536876927, 'f1-score': 0.9248076741561722, 'support': 33500.0} | {'precision': 0.9467003253592766, 'recall': 0.9467761194029851, 'f1-score': 0.9465077148425208, 'support': 33500.0} |
|
111 |
+
| 0.0016 | 40.0 | 3240 | 0.4843 | {'precision': 0.8838315217391305, 'recall': 0.9034722222222222, 'f1-score': 0.8935439560439561, 'support': 1440.0} | {'precision': 0.9541067200874158, 'recall': 0.9707694445731228, 'f1-score': 0.962365961745999, 'support': 21587.0} | {'precision': 0.9373012718600954, 'recall': 0.9006970304592762, 'f1-score': 0.9186346593952379, 'support': 10473.0} | 0.9460 | {'precision': 0.9250798378955473, 'recall': 0.9249795657515404, 'f1-score': 0.9248481923950643, 'support': 33500.0} | {'precision': 0.9458321008364828, 'recall': 0.9459701492537314, 'f1-score': 0.9457360627092687, 'support': 33500.0} |
|
112 |
+
| 0.0016 | 41.0 | 3321 | 0.4890 | {'precision': 0.8825938566552901, 'recall': 0.8979166666666667, 'f1-score': 0.8901893287435455, 'support': 1440.0} | {'precision': 0.9569179784589892, 'recall': 0.9630796312595543, 'f1-score': 0.9599889178768498, 'support': 21587.0} | {'precision': 0.9224949073624988, 'recall': 0.9080492695502721, 'f1-score': 0.915215089981715, 'support': 10473.0} | 0.9431 | {'precision': 0.920668914158926, 'recall': 0.9230151891588311, 'f1-score': 0.92179777886737, 'support': 33500.0} | {'precision': 0.942961573712993, 'recall': 0.9430746268656717, 'f1-score': 0.9429910758500526, 'support': 33500.0} |
|
113 |
+
| 0.0016 | 42.0 | 3402 | 0.4932 | {'precision': 0.8835942818243703, 'recall': 0.9013888888888889, 'f1-score': 0.8924028875902373, 'support': 1440.0} | {'precision': 0.9572775350655323, 'recall': 0.9642840598508362, 'f1-score': 0.9607680236314964, 'support': 21587.0} | {'precision': 0.9250437487847559, 'recall': 0.9085266876730641, 'f1-score': 0.9167108242208198, 'support': 10473.0} | 0.9441 | {'precision': 0.9219718552248861, 'recall': 0.9247332121375963, 'f1-score': 0.9232939118141844, 'support': 33500.0} | {'precision': 0.9440331073525219, 'recall': 0.9441492537313433, 'f1-score': 0.9440558789948568, 'support': 33500.0} |
|
114 |
+
| 0.0016 | 43.0 | 3483 | 0.4889 | {'precision': 0.8834688346883469, 'recall': 0.9055555555555556, 'f1-score': 0.8943758573388203, 'support': 1440.0} | {'precision': 0.956832554302997, 'recall': 0.9672488071524529, 'f1-score': 0.9620124858900229, 'support': 21587.0} | {'precision': 0.9311899627524015, 'recall': 0.9070944333046882, 'f1-score': 0.9189842805320435, 'support': 10473.0} | 0.9458 | {'precision': 0.9238304505812485, 'recall': 0.9266329320042322, 'f1-score': 0.9251242079202955, 'support': 33500.0} | {'precision': 0.945662446316296, 'recall': 0.9457910447761194, 'f1-score': 0.945653347387699, 'support': 33500.0} |
|
115 |
+
| 0.0015 | 44.0 | 3564 | 0.4940 | {'precision': 0.8824728260869565, 'recall': 0.9020833333333333, 'f1-score': 0.8921703296703297, 'support': 1440.0} | {'precision': 0.956918282231083, 'recall': 0.9672024829758651, 'f1-score': 0.9620328986776021, 'support': 21587.0} | {'precision': 0.9309432853364679, 'recall': 0.9074763678029218, 'f1-score': 0.9190600522193212, 'support': 10473.0} | 0.9457 | {'precision': 0.9234447978848358, 'recall': 0.9255873947040402, 'f1-score': 0.9244210935224176, 'support': 33500.0} | {'precision': 0.9455977568781024, 'recall': 0.9457313432835821, 'f1-score': 0.9455953846379588, 'support': 33500.0} |
|
116 |
+
| 0.0015 | 45.0 | 3645 | 0.4995 | {'precision': 0.8868438991138378, 'recall': 0.9034722222222222, 'f1-score': 0.8950808393532852, 'support': 1440.0} | {'precision': 0.9556479239939707, 'recall': 0.9691944225691388, 'f1-score': 0.9623735050597976, 'support': 21587.0} | {'precision': 0.9342209072978304, 'recall': 0.9045163754416118, 'f1-score': 0.9191287051860476, 'support': 10473.0} | 0.9461 | {'precision': 0.925570910135213, 'recall': 0.9257276734109908, 'f1-score': 0.92552768319971, 'support': 33500.0} | {'precision': 0.9459917167794611, 'recall': 0.9461492537313433, 'f1-score': 0.9459614385614344, 'support': 33500.0} |
|
117 |
+
| 0.0015 | 46.0 | 3726 | 0.5006 | {'precision': 0.8788694481830417, 'recall': 0.9069444444444444, 'f1-score': 0.8926862611073137, 'support': 1440.0} | {'precision': 0.9524392455567646, 'recall': 0.9731319775790985, 'f1-score': 0.9626744265976216, 'support': 21587.0} | {'precision': 0.9423579031934123, 'recall': 0.8960183328559153, 'f1-score': 0.918604082032206, 'support': 10473.0} | 0.9462 | {'precision': 0.9245555323110729, 'recall': 0.9253649182931527, 'f1-score': 0.9246549232457139, 'support': 33500.0} | {'precision': 0.9461251438615541, 'recall': 0.9461791044776119, 'f1-score': 0.9458884063904681, 'support': 33500.0} |
|
118 |
+
| 0.0015 | 47.0 | 3807 | 0.4959 | {'precision': 0.881596752368065, 'recall': 0.9048611111111111, 'f1-score': 0.8930774503084304, 'support': 1440.0} | {'precision': 0.9552955158385519, 'recall': 0.9681289665076204, 'f1-score': 0.9616694275722437, 'support': 21587.0} | {'precision': 0.9324790537210449, 'recall': 0.9032750883223527, 'f1-score': 0.9176447764089631, 'support': 10473.0} | 0.9451 | {'precision': 0.9231237739758873, 'recall': 0.9254217219803614, 'f1-score': 0.9241305514298791, 'support': 33500.0} | {'precision': 0.9449945299533534, 'recall': 0.945134328358209, 'f1-score': 0.9449577076052906, 'support': 33500.0} |
|
119 |
+
| 0.0015 | 48.0 | 3888 | 0.4958 | {'precision': 0.8804054054054054, 'recall': 0.9048611111111111, 'f1-score': 0.8924657534246575, 'support': 1440.0} | {'precision': 0.9550356424785231, 'recall': 0.968175290684208, 'f1-score': 0.961560580616963, 'support': 21587.0} | {'precision': 0.9326164167324388, 'recall': 0.902606702950444, 'f1-score': 0.9173661992333446, 'support': 10473.0} | 0.9450 | {'precision': 0.9226858215387891, 'recall': 0.9252143682485877, 'f1-score': 0.9237975110916551, 'support': 33500.0} | {'precision': 0.9448188038927311, 'recall': 0.944955223880597, 'f1-score': 0.9447741833815136, 'support': 33500.0} |
|
120 |
+
| 0.0015 | 49.0 | 3969 | 0.4969 | {'precision': 0.8815165876777251, 'recall': 0.9041666666666667, 'f1-score': 0.8926979773740144, 'support': 1440.0} | {'precision': 0.9562766396260141, 'recall': 0.9665539445036364, 'f1-score': 0.9613878265677557, 'support': 21587.0} | {'precision': 0.9295374362994904, 'recall': 0.9056621789363124, 'f1-score': 0.9174445035546742, 'support': 10473.0} | 0.9448 | {'precision': 0.9224435545344098, 'recall': 0.9254609300355385, 'f1-score': 0.923843435832148, 'support': 33500.0} | {'precision': 0.9447036798873807, 'recall': 0.9448358208955224, 'f1-score': 0.9446973249332784, 'support': 33500.0} |
|
121 |
+
| 0.0011 | 50.0 | 4050 | 0.4964 | {'precision': 0.8815165876777251, 'recall': 0.9041666666666667, 'f1-score': 0.8926979773740144, 'support': 1440.0} | {'precision': 0.9563064508734125, 'recall': 0.9662296752675221, 'f1-score': 0.9612424535692888, 'support': 21587.0} | {'precision': 0.9289071680376029, 'recall': 0.9057576625608708, 'f1-score': 0.9171863669325598, 'support': 10473.0} | 0.9447 | {'precision': 0.9222434021962469, 'recall': 0.9253846681650199, 'f1-score': 0.9237089326252876, 'support': 33500.0} | {'precision': 0.9445258511080028, 'recall': 0.9446567164179105, 'f1-score': 0.9445229478657765, 'support': 33500.0} |
|
122 |
|
123 |
|
124 |
### Framework versions
|
meta_data/README_s42_e50.md
CHANGED
@@ -17,12 +17,12 @@ model-index:
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: spans
|
20 |
-
split: train[
|
21 |
args: spans
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,13 +32,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- B: {'precision': 0.
|
37 |
-
- I: {'precision': 0.
|
38 |
-
- O: {'precision': 0.
|
39 |
-
- Accuracy: 0.
|
40 |
-
- Macro avg: {'precision': 0.
|
41 |
-
- Weighted avg: {'precision': 0.
|
42 |
|
43 |
## Model description
|
44 |
|
@@ -67,58 +67,58 @@ The following hyperparameters were used during training:
|
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
-
| Training Loss | Epoch | Step | Validation Loss | B | I | O
|
71 |
-
|
72 |
-
| No log | 1.0 | 81 | 0.
|
73 |
-
| No log | 2.0 | 162 | 0.
|
74 |
-
| No log | 3.0 | 243 | 0.
|
75 |
-
| No log | 4.0 | 324 | 0.
|
76 |
-
| No log | 5.0 | 405 | 0.
|
77 |
-
| No log | 6.0 | 486 | 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
|
123 |
|
124 |
### Framework versions
|
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: spans
|
20 |
+
split: train[60%:80%]
|
21 |
args: spans
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.9446567164179105
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4964
|
36 |
+
- B: {'precision': 0.8815165876777251, 'recall': 0.9041666666666667, 'f1-score': 0.8926979773740144, 'support': 1440.0}
|
37 |
+
- I: {'precision': 0.9563064508734125, 'recall': 0.9662296752675221, 'f1-score': 0.9612424535692888, 'support': 21587.0}
|
38 |
+
- O: {'precision': 0.9289071680376029, 'recall': 0.9057576625608708, 'f1-score': 0.9171863669325598, 'support': 10473.0}
|
39 |
+
- Accuracy: 0.9447
|
40 |
+
- Macro avg: {'precision': 0.9222434021962469, 'recall': 0.9253846681650199, 'f1-score': 0.9237089326252876, 'support': 33500.0}
|
41 |
+
- Weighted avg: {'precision': 0.9445258511080028, 'recall': 0.9446567164179105, 'f1-score': 0.9445229478657765, 'support': 33500.0}
|
42 |
|
43 |
## Model description
|
44 |
|
|
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
+
| Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg |
|
71 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
72 |
+
| No log | 1.0 | 81 | 0.3293 | {'precision': 0.7768096514745308, 'recall': 0.8048611111111111, 'f1-score': 0.7905866302864938, 'support': 1440.0} | {'precision': 0.9637593111099372, 'recall': 0.8450919534905267, 'f1-score': 0.9005331227169513, 'support': 21587.0} | {'precision': 0.7463108800367001, 'recall': 0.9320156593144275, 'f1-score': 0.8288892663043479, 'support': 10473.0} | 0.8705 | {'precision': 0.8289599475403894, 'recall': 0.8606562413053552, 'f1-score': 0.8400030064359308, 'support': 33500.0} | {'precision': 0.8877430445874, 'recall': 0.8705373134328358, 'f1-score': 0.8734092702599646, 'support': 33500.0} |
|
73 |
+
| No log | 2.0 | 162 | 0.2162 | {'precision': 0.8325849903784477, 'recall': 0.9013888888888889, 'f1-score': 0.8656218739579861, 'support': 1440.0} | {'precision': 0.9423736462093862, 'recall': 0.9673877796822161, 'f1-score': 0.9547168948727912, 'support': 21587.0} | {'precision': 0.9332379102341274, 'recall': 0.8715745249689678, 'f1-score': 0.9013528191962081, 'support': 10473.0} | 0.9346 | {'precision': 0.902732182273987, 'recall': 0.9134503978466909, 'f1-score': 0.9072305293423284, 'support': 33500.0} | {'precision': 0.9347982961417612, 'recall': 0.9345970149253732, 'f1-score': 0.9342040950316517, 'support': 33500.0} |
|
74 |
+
| No log | 3.0 | 243 | 0.2408 | {'precision': 0.8717034925160371, 'recall': 0.8493055555555555, 'f1-score': 0.8603587759409076, 'support': 1440.0} | {'precision': 0.9677057963955188, 'recall': 0.9203224162690509, 'f1-score': 0.9434195218082959, 'support': 21587.0} | {'precision': 0.8459410391631365, 'recall': 0.9343072663038289, 'f1-score': 0.8879310344827586, 'support': 10473.0} | 0.9216 | {'precision': 0.8951167760248975, 'recall': 0.9013117460428117, 'f1-score': 0.8972364440773206, 'support': 33500.0} | {'precision': 0.9255121957960801, 'recall': 0.9216417910447762, 'f1-score': 0.9225019575751797, 'support': 33500.0} |
|
75 |
+
| No log | 4.0 | 324 | 0.2208 | {'precision': 0.8504854368932039, 'recall': 0.9125, 'f1-score': 0.8804020100502512, 'support': 1440.0} | {'precision': 0.945595388218339, 'recall': 0.9726224116366332, 'f1-score': 0.9589184992350025, 'support': 21587.0} | {'precision': 0.9427750999897446, 'recall': 0.877780960565263, 'f1-score': 0.9091178797468354, 'support': 10473.0} | 0.9404 | {'precision': 0.9129519750337626, 'recall': 0.9209677907339654, 'f1-score': 0.9161461296773631, 'support': 33500.0} | {'precision': 0.9406253819936745, 'recall': 0.9403880597014925, 'f1-score': 0.9399744505088647, 'support': 33500.0} |
|
76 |
+
| No log | 5.0 | 405 | 0.2258 | {'precision': 0.8736559139784946, 'recall': 0.9027777777777778, 'f1-score': 0.8879781420765027, 'support': 1440.0} | {'precision': 0.9539317642765919, 'recall': 0.9688238291564367, 'f1-score': 0.9613201259451634, 'support': 21587.0} | {'precision': 0.9334853291038858, 'recall': 0.899169292466342, 'f1-score': 0.916006030835076, 'support': 10473.0} | 0.9442 | {'precision': 0.9203576691196576, 'recall': 0.9235902998001855, 'f1-score': 0.921768099618914, 'support': 33500.0} | {'precision': 0.9440889959185916, 'recall': 0.9442089552238806, 'f1-score': 0.9440011117702735, 'support': 33500.0} |
|
77 |
+
| No log | 6.0 | 486 | 0.2242 | {'precision': 0.8803827751196173, 'recall': 0.8944444444444445, 'f1-score': 0.8873579056148813, 'support': 1440.0} | {'precision': 0.9539267015706806, 'recall': 0.9706304720433594, 'f1-score': 0.9622060984570168, 'support': 21587.0} | {'precision': 0.9365567911040509, 'recall': 0.9006970304592762, 'f1-score': 0.9182769530299342, 'support': 10473.0} | 0.9455 | {'precision': 0.923622089264783, 'recall': 0.9219239823156933, 'f1-score': 0.9226136523672773, 'support': 33500.0} | {'precision': 0.9453351097376493, 'recall': 0.9454925373134329, 'f1-score': 0.945255312255509, 'support': 33500.0} |
|
78 |
+
| 0.1601 | 7.0 | 567 | 0.2252 | {'precision': 0.8730691739422431, 'recall': 0.9027777777777778, 'f1-score': 0.8876749743939911, 'support': 1440.0} | {'precision': 0.9581108451482232, 'recall': 0.9641914114976606, 'f1-score': 0.9611415113943341, 'support': 21587.0} | {'precision': 0.9247594050743657, 'recall': 0.9083357204239473, 'f1-score': 0.9164739884393064, 'support': 10473.0} | 0.9441 | {'precision': 0.9186464747216107, 'recall': 0.9251016365664619, 'f1-score': 0.9217634914092105, 'support': 33500.0} | {'precision': 0.9440287663891153, 'recall': 0.944089552238806, 'f1-score': 0.9440192791200506, 'support': 33500.0} |
|
79 |
+
| 0.1601 | 8.0 | 648 | 0.2487 | {'precision': 0.8740888005301524, 'recall': 0.9159722222222222, 'f1-score': 0.894540522210919, 'support': 1440.0} | {'precision': 0.9540255968049378, 'recall': 0.9737805160513272, 'f1-score': 0.9638018385639943, 'support': 21587.0} | {'precision': 0.9441598875163202, 'recall': 0.8976415544734078, 'f1-score': 0.9203132648066569, 'support': 10473.0} | 0.9475 | {'precision': 0.9240914282838034, 'recall': 0.9291314309156524, 'f1-score': 0.9262185418605234, 'support': 33500.0} | {'precision': 0.9475052218791054, 'recall': 0.9474925373134329, 'f1-score': 0.947228939205516, 'support': 33500.0} |
|
80 |
+
| 0.1601 | 9.0 | 729 | 0.3045 | {'precision': 0.8643282594308405, 'recall': 0.9069444444444444, 'f1-score': 0.8851236868858015, 'support': 1440.0} | {'precision': 0.9540067462849849, 'recall': 0.9695186918052532, 'f1-score': 0.9617001723147618, 'support': 21587.0} | {'precision': 0.9358272808675754, 'recall': 0.8981189725961998, 'f1-score': 0.9165854609237966, 'support': 10473.0} | 0.9445 | {'precision': 0.9180540955278002, 'recall': 0.9248607029486324, 'f1-score': 0.9211364400414532, 'support': 33500.0} | {'precision': 0.9444685205421044, 'recall': 0.9445074626865672, 'f1-score': 0.9443044555560967, 'support': 33500.0} |
|
81 |
+
| 0.1601 | 10.0 | 810 | 0.3263 | {'precision': 0.8695945945945946, 'recall': 0.89375, 'f1-score': 0.8815068493150685, 'support': 1440.0} | {'precision': 0.9660159757999717, 'recall': 0.9467735211006625, 'f1-score': 0.956297959947595, 'support': 21587.0} | {'precision': 0.8937678357728068, 'recall': 0.9270505108373914, 'f1-score': 0.9101049868766404, 'support': 10473.0} | 0.9383 | {'precision': 0.909792802055791, 'recall': 0.9225246773126846, 'f1-score': 0.9159699320464346, 'support': 33500.0} | {'precision': 0.9392845859659347, 'recall': 0.9383283582089552, 'f1-score': 0.9386418940884026, 'support': 33500.0} |
|
82 |
+
| 0.1601 | 11.0 | 891 | 0.3124 | {'precision': 0.8831168831168831, 'recall': 0.8972222222222223, 'f1-score': 0.8901136755080951, 'support': 1440.0} | {'precision': 0.9535359970874671, 'recall': 0.9706304720433594, 'f1-score': 0.9620073001078947, 'support': 21587.0} | {'precision': 0.9361025539103647, 'recall': 0.8994557433400172, 'f1-score': 0.917413322945072, 'support': 10473.0} | 0.9452 | {'precision': 0.9242518113715716, 'recall': 0.922436145868533, 'f1-score': 0.9231780995203539, 'support': 33500.0} | {'precision': 0.9450588635199616, 'recall': 0.9452238805970149, 'f1-score': 0.9449756719810304, 'support': 33500.0} |
|
83 |
+
| 0.1601 | 12.0 | 972 | 0.3427 | {'precision': 0.8661735036987223, 'recall': 0.8944444444444445, 'f1-score': 0.8800819952169457, 'support': 1440.0} | {'precision': 0.9512039692293687, 'recall': 0.9680363181544448, 'f1-score': 0.9595463311598861, 'support': 21587.0} | {'precision': 0.9310035842293907, 'recall': 0.8928673732454884, 'f1-score': 0.9115367743822197, 'support': 10473.0} | 0.9414 | {'precision': 0.9161270190524938, 'recall': 0.9184493786147926, 'f1-score': 0.9170550335863505, 'support': 33500.0} | {'precision': 0.9412337452750731, 'recall': 0.9413731343283582, 'f1-score': 0.9411214734915179, 'support': 33500.0} |
|
84 |
+
| 0.0222 | 13.0 | 1053 | 0.3817 | {'precision': 0.8704318936877077, 'recall': 0.9097222222222222, 'f1-score': 0.8896434634974534, 'support': 1440.0} | {'precision': 0.9556591698665204, 'recall': 0.9684532357437347, 'f1-score': 0.9620136667970457, 'support': 21587.0} | {'precision': 0.9343808676746714, 'recall': 0.9027976701995608, 'f1-score': 0.9183177933177933, 'support': 10473.0} | 0.9454 | {'precision': 0.9201573104096331, 'recall': 0.9269910427218392, 'f1-score': 0.9233249745374308, 'support': 33500.0} | {'precision': 0.9453435001186778, 'recall': 0.9454029850746268, 'f1-score': 0.945242324238848, 'support': 33500.0} |
|
85 |
+
| 0.0222 | 14.0 | 1134 | 0.3827 | {'precision': 0.8754231550440081, 'recall': 0.8979166666666667, 'f1-score': 0.8865272540281112, 'support': 1440.0} | {'precision': 0.9557331129172981, 'recall': 0.9641450873210728, 'f1-score': 0.9599206715247671, 'support': 21587.0} | {'precision': 0.9242631270739801, 'recall': 0.9042299245679366, 'f1-score': 0.9141367826632559, 'support': 10473.0} | 0.9426 | {'precision': 0.9184731316784287, 'recall': 0.9220972261852255, 'f1-score': 0.9201949027387114, 'support': 33500.0} | {'precision': 0.9424426203479068, 'recall': 0.9425671641791045, 'f1-score': 0.9424525763235196, 'support': 33500.0} |
|
86 |
+
| 0.0222 | 15.0 | 1215 | 0.3902 | {'precision': 0.8868841082581541, 'recall': 0.8875, 'f1-score': 0.8871919472405415, 'support': 1440.0} | {'precision': 0.9571841585975862, 'recall': 0.9662296752675221, 'f1-score': 0.9616856471022177, 'support': 21587.0} | {'precision': 0.9273470977795092, 'recall': 0.9091950730449728, 'f1-score': 0.9181813798756087, 'support': 10473.0} | 0.9450 | {'precision': 0.9238051215450831, 'recall': 0.920974916104165, 'f1-score': 0.9223529914061226, 'support': 33500.0} | {'precision': 0.9448344388830637, 'recall': 0.9450149253731344, 'f1-score': 0.944882927148036, 'support': 33500.0} |
|
87 |
+
| 0.0222 | 16.0 | 1296 | 0.4009 | {'precision': 0.8857536132140399, 'recall': 0.89375, 'f1-score': 0.8897338403041825, 'support': 1440.0} | {'precision': 0.9570693142121713, 'recall': 0.9645620049103627, 'f1-score': 0.9608010520729992, 'support': 21587.0} | {'precision': 0.9240112719852298, 'recall': 0.9079537859257137, 'f1-score': 0.9159121556540166, 'support': 10473.0} | 0.9438 | {'precision': 0.9222780664704805, 'recall': 0.9220885969453588, 'f1-score': 0.9221490160103993, 'support': 33500.0} | {'precision': 0.9436689713560499, 'recall': 0.943820895522388, 'f1-score': 0.9437127476806678, 'support': 33500.0} |
|
88 |
+
| 0.0222 | 17.0 | 1377 | 0.4279 | {'precision': 0.89198606271777, 'recall': 0.8888888888888888, 'f1-score': 0.8904347826086957, 'support': 1440.0} | {'precision': 0.9589034784611841, 'recall': 0.9641450873210728, 'f1-score': 0.9615171394252979, 'support': 21587.0} | {'precision': 0.9232625482625483, 'recall': 0.9133008689009835, 'f1-score': 0.9182546920750733, 'support': 10473.0} | 0.9450 | {'precision': 0.9247173631471673, 'recall': 0.9221116150369818, 'f1-score': 0.9234022047030224, 'support': 33500.0} | {'precision': 0.9448847160539952, 'recall': 0.9450149253731344, 'f1-score': 0.9449366556964975, 'support': 33500.0} |
|
89 |
+
| 0.0222 | 18.0 | 1458 | 0.4226 | {'precision': 0.8846153846153846, 'recall': 0.8944444444444445, 'f1-score': 0.8895027624309393, 'support': 1440.0} | {'precision': 0.9555912007332722, 'recall': 0.9659054060314078, 'f1-score': 0.9607206210979795, 'support': 21587.0} | {'precision': 0.9271322378716745, 'recall': 0.905089277188962, 'f1-score': 0.9159781610861478, 'support': 10473.0} | 0.9438 | {'precision': 0.9224462744067772, 'recall': 0.9218130425549381, 'f1-score': 0.9220671815383555, 'support': 33500.0} | {'precision': 0.9436432636210552, 'recall': 0.943820895522388, 'f1-score': 0.9436716210924735, 'support': 33500.0} |
|
90 |
+
| 0.0054 | 19.0 | 1539 | 0.4376 | {'precision': 0.8890420399724328, 'recall': 0.8958333333333334, 'f1-score': 0.8924247665167762, 'support': 1440.0} | {'precision': 0.959121387283237, 'recall': 0.9608097466067541, 'f1-score': 0.9599648245857633, 'support': 21587.0} | {'precision': 0.9179777436684574, 'recall': 0.913682803399217, 'f1-score': 0.9158252380724505, 'support': 10473.0} | 0.9433 | {'precision': 0.9220470569747091, 'recall': 0.9234419611131015, 'f1-score': 0.9227382763916633, 'support': 33500.0} | {'precision': 0.9432464129636805, 'recall': 0.9432835820895522, 'f1-score': 0.9432623895656658, 'support': 33500.0} |
|
91 |
+
| 0.0054 | 20.0 | 1620 | 0.4444 | {'precision': 0.8843258042436687, 'recall': 0.8972222222222223, 'f1-score': 0.8907273354015857, 'support': 1440.0} | {'precision': 0.9520958083832335, 'recall': 0.972251818223931, 'f1-score': 0.9620682542229149, 'support': 21587.0} | {'precision': 0.9396698349174587, 'recall': 0.8967822018523823, 'f1-score': 0.9177252296267345, 'support': 10473.0} | 0.9454 | {'precision': 0.9253638158481202, 'recall': 0.922085414099512, 'f1-score': 0.9235069397504118, 'support': 33500.0} | {'precision': 0.9452980165603072, 'recall': 0.9454328358208955, 'f1-score': 0.9451388387095264, 'support': 33500.0} |
|
92 |
+
| 0.0054 | 21.0 | 1701 | 0.4363 | {'precision': 0.8784604996623903, 'recall': 0.9034722222222222, 'f1-score': 0.890790825059911, 'support': 1440.0} | {'precision': 0.9533284764593388, 'recall': 0.9698892852179553, 'f1-score': 0.9615375783600082, 'support': 21587.0} | {'precision': 0.9351695336581486, 'recall': 0.8980234889716414, 'f1-score': 0.9162201656113005, 'support': 10473.0} | 0.9446 | {'precision': 0.9223195032599593, 'recall': 0.9237949988039397, 'f1-score': 0.9228495230104065, 'support': 33500.0} | {'precision': 0.9444332975177129, 'recall': 0.9445671641791045, 'f1-score': 0.9443290831818184, 'support': 33500.0} |
|
93 |
+
| 0.0054 | 22.0 | 1782 | 0.3998 | {'precision': 0.8816326530612245, 'recall': 0.9, 'f1-score': 0.8907216494845361, 'support': 1440.0} | {'precision': 0.9588801399825022, 'recall': 0.9646546532635383, 'f1-score': 0.961758728985775, 'support': 21587.0} | {'precision': 0.9258217783380199, 'recall': 0.9116776472834909, 'f1-score': 0.9186952756663139, 'support': 10473.0} | 0.9453 | {'precision': 0.9221115237939155, 'recall': 0.925444100182343, 'f1-score': 0.9237252180455416, 'support': 33500.0} | {'precision': 0.9452247190072991, 'recall': 0.9453134328358209, 'f1-score': 0.9452424023858794, 'support': 33500.0} |
|
94 |
+
| 0.0054 | 23.0 | 1863 | 0.4420 | {'precision': 0.8765020026702269, 'recall': 0.9118055555555555, 'f1-score': 0.8938053097345132, 'support': 1440.0} | {'precision': 0.9584770313146641, 'recall': 0.9655811367952934, 'f1-score': 0.9620159689850926, 'support': 21587.0} | {'precision': 0.9284251584592882, 'recall': 0.9090995894204144, 'f1-score': 0.918660748745658, 'support': 10473.0} | 0.9456 | {'precision': 0.9211347308147264, 'recall': 0.9288287605904211, 'f1-score': 0.9248273424884212, 'support': 33500.0} | {'precision': 0.9455583057725045, 'recall': 0.9456119402985075, 'f1-score': 0.9455299220929005, 'support': 33500.0} |
|
95 |
+
| 0.0054 | 24.0 | 1944 | 0.4822 | {'precision': 0.8830290736984449, 'recall': 0.9069444444444444, 'f1-score': 0.89482699554642, 'support': 1440.0} | {'precision': 0.9544605005242285, 'recall': 0.969935609394543, 'f1-score': 0.962135833103575, 'support': 21587.0} | {'precision': 0.9362356207854026, 'recall': 0.9014608994557434, 'f1-score': 0.9185192391885975, 'support': 10473.0} | 0.9458 | {'precision': 0.924575065002692, 'recall': 0.9261136510982436, 'f1-score': 0.9251606892795309, 'support': 33500.0} | {'precision': 0.945692428281427, 'recall': 0.945820895522388, 'f1-score': 0.9456068386512209, 'support': 33500.0} |
|
96 |
+
| 0.0037 | 25.0 | 2025 | 0.4624 | {'precision': 0.8812628689087165, 'recall': 0.8916666666666667, 'f1-score': 0.8864342423196411, 'support': 1440.0} | {'precision': 0.9537320946409775, 'recall': 0.9653958400889424, 'f1-score': 0.9595285234126801, 'support': 21587.0} | {'precision': 0.9255298273155416, 'recall': 0.9006970304592762, 'f1-score': 0.9129445923058311, 'support': 10473.0} | 0.942 | {'precision': 0.9201749302884119, 'recall': 0.9192531790716284, 'f1-score': 0.9196357860127174, 'support': 33500.0} | {'precision': 0.9418002131259403, 'recall': 0.942, 'f1-score': 0.941823171912501, 'support': 33500.0} |
|
97 |
+
| 0.0037 | 26.0 | 2106 | 0.4685 | {'precision': 0.8809201623815968, 'recall': 0.9041666666666667, 'f1-score': 0.892392049348869, 'support': 1440.0} | {'precision': 0.9556420233463035, 'recall': 0.9670635104461018, 'f1-score': 0.9613188432492171, 'support': 21587.0} | {'precision': 0.9306278864105335, 'recall': 0.904325408192495, 'f1-score': 0.9172881355932202, 'support': 10473.0} | 0.9447 | {'precision': 0.9223966907128114, 'recall': 0.9251851951017546, 'f1-score': 0.9236663427304355, 'support': 33500.0} | {'precision': 0.9446100073487664, 'recall': 0.9447462686567164, 'f1-score': 0.9445908377418215, 'support': 33500.0} |
|
98 |
+
| 0.0037 | 27.0 | 2187 | 0.5011 | {'precision': 0.882111034955449, 'recall': 0.89375, 'f1-score': 0.8878923766816142, 'support': 1440.0} | {'precision': 0.9467098748762265, 'recall': 0.9743827303469681, 'f1-score': 0.9603469923524712, 'support': 21587.0} | {'precision': 0.943398147205538, 'recall': 0.8848467487825837, 'f1-score': 0.9131848640126133, 'support': 10473.0} | 0.9429 | {'precision': 0.9240730190124045, 'recall': 0.9176598263765173, 'f1-score': 0.9204747443488995, 'support': 33500.0} | {'precision': 0.9428977538797776, 'recall': 0.9429253731343283, 'f1-score': 0.942488376929505, 'support': 33500.0} |
|
99 |
+
| 0.0037 | 28.0 | 2268 | 0.4657 | {'precision': 0.8817934782608695, 'recall': 0.9013888888888889, 'f1-score': 0.8914835164835164, 'support': 1440.0} | {'precision': 0.9618175053483397, 'recall': 0.9580302960114884, 'f1-score': 0.9599201652393882, 'support': 21587.0} | {'precision': 0.9141174235227056, 'recall': 0.9187434355008116, 'f1-score': 0.9164245916472212, 'support': 10473.0} | 0.9433 | {'precision': 0.919242802377305, 'recall': 0.9260542068003962, 'f1-score': 0.9226094244567086, 'support': 33500.0} | {'precision': 0.9434653394986137, 'recall': 0.9433134328358209, 'f1-score': 0.9433805259426951, 'support': 33500.0} |
|
100 |
+
| 0.0037 | 29.0 | 2349 | 0.4543 | {'precision': 0.8623141564318035, 'recall': 0.9263888888888889, 'f1-score': 0.8932038834951457, 'support': 1440.0} | {'precision': 0.9559099867088318, 'recall': 0.9661833510909343, 'f1-score': 0.9610192139335576, 'support': 21587.0} | {'precision': 0.9318136964673377, 'recall': 0.9016518667048601, 'f1-score': 0.9164846896685592, 'support': 10473.0} | 0.9443 | {'precision': 0.9166792798693243, 'recall': 0.931408035561561, 'f1-score': 0.9235692623657542, 'support': 33500.0} | {'precision': 0.9443536152670977, 'recall': 0.9442985074626866, 'f1-score': 0.9441814781586727, 'support': 33500.0} |
|
101 |
+
| 0.0037 | 30.0 | 2430 | 0.4872 | {'precision': 0.8794373744139317, 'recall': 0.9118055555555555, 'f1-score': 0.8953290146607569, 'support': 1440.0} | {'precision': 0.9528786295269687, 'recall': 0.9714179830453513, 'f1-score': 0.9620589989448088, 'support': 21587.0} | {'precision': 0.9394, 'recall': 0.896973169101499, 'f1-score': 0.9176964782884776, 'support': 10473.0} | 0.9456 | {'precision': 0.9239053346469669, 'recall': 0.926732235900802, 'f1-score': 0.9250281639646811, 'support': 33500.0} | {'precision': 0.9455079699926786, 'recall': 0.9455820895522388, 'f1-score': 0.945321689804427, 'support': 33500.0} |
|
102 |
+
| 0.0025 | 31.0 | 2511 | 0.4678 | {'precision': 0.8791581805838425, 'recall': 0.8993055555555556, 'f1-score': 0.8891177480260899, 'support': 1440.0} | {'precision': 0.9535978787601719, 'recall': 0.9662759994441099, 'f1-score': 0.9598950783461034, 'support': 21587.0} | {'precision': 0.9281000689451394, 'recall': 0.8997421942136924, 'f1-score': 0.9137011538834482, 'support': 10473.0} | 0.9426 | {'precision': 0.9202853760963846, 'recall': 0.9217745830711194, 'f1-score': 0.9209046600852139, 'support': 33500.0} | {'precision': 0.9424267824148957, 'recall': 0.9425970149253732, 'f1-score': 0.9424112477025748, 'support': 33500.0} |
|
103 |
+
| 0.0025 | 32.0 | 2592 | 0.4877 | {'precision': 0.8766101694915254, 'recall': 0.8979166666666667, 'f1-score': 0.8871355060034306, 'support': 1440.0} | {'precision': 0.9538848263254114, 'recall': 0.966831889563163, 'f1-score': 0.9603147215128719, 'support': 21587.0} | {'precision': 0.9292262198127156, 'recall': 0.9001241287119259, 'f1-score': 0.9144436899796294, 'support': 10473.0} | 0.9430 | {'precision': 0.9199070718765507, 'recall': 0.9216242283139185, 'f1-score': 0.9206313058319773, 'support': 33500.0} | {'precision': 0.942854226568747, 'recall': 0.9430149253731344, 'f1-score': 0.9428285906597003, 'support': 33500.0} |
|
104 |
+
| 0.0025 | 33.0 | 2673 | 0.4951 | {'precision': 0.8712674187126742, 'recall': 0.9118055555555555, 'f1-score': 0.8910756701730572, 'support': 1440.0} | {'precision': 0.9516713470423046, 'recall': 0.9733172742854496, 'f1-score': 0.9623726096415894, 'support': 21587.0} | {'precision': 0.9435199193141705, 'recall': 0.8932493077437219, 'f1-score': 0.9176966843241121, 'support': 10473.0} | 0.9456 | {'precision': 0.9221528950230496, 'recall': 0.9261240458615757, 'f1-score': 0.9237149880462528, 'support': 33500.0} | {'precision': 0.9456668228813668, 'recall': 0.9456417910447761, 'f1-score': 0.9453410108748842, 'support': 33500.0} |
|
105 |
+
| 0.0025 | 34.0 | 2754 | 0.4796 | {'precision': 0.8743351063829787, 'recall': 0.9131944444444444, 'f1-score': 0.8933423913043478, 'support': 1440.0} | {'precision': 0.9546159459952563, 'recall': 0.9695186918052532, 'f1-score': 0.9620096067661051, 'support': 21587.0} | {'precision': 0.9362589356632248, 'recall': 0.9004105795856011, 'f1-score': 0.9179849111706012, 'support': 10473.0} | 0.9455 | {'precision': 0.9217366626804866, 'recall': 0.9277079052784329, 'f1-score': 0.9244456364136847, 'support': 33500.0} | {'precision': 0.9454261735102102, 'recall': 0.9454925373134329, 'f1-score': 0.9452946387888919, 'support': 33500.0} |
|
106 |
+
| 0.0025 | 35.0 | 2835 | 0.4806 | {'precision': 0.878213802435724, 'recall': 0.9013888888888889, 'f1-score': 0.8896504455106238, 'support': 1440.0} | {'precision': 0.9520805917320869, 'recall': 0.9719275489878167, 'f1-score': 0.9619017054832203, 'support': 21587.0} | {'precision': 0.9400100150225338, 'recall': 0.896209300105032, 'f1-score': 0.917587251930785, 'support': 10473.0} | 0.9452 | {'precision': 0.9234348030634482, 'recall': 0.9231752459939125, 'f1-score': 0.923046467641543, 'support': 33500.0} | {'precision': 0.9451318357181789, 'recall': 0.9452238805970149, 'f1-score': 0.9449420909633638, 'support': 33500.0} |
|
107 |
+
| 0.0025 | 36.0 | 2916 | 0.4833 | {'precision': 0.8815165876777251, 'recall': 0.9041666666666667, 'f1-score': 0.8926979773740144, 'support': 1440.0} | {'precision': 0.9559374714324893, 'recall': 0.9688238291564367, 'f1-score': 0.9623375129414473, 'support': 21587.0} | {'precision': 0.9339576145884673, 'recall': 0.9047073426907285, 'f1-score': 0.9190998156950239, 'support': 10473.0} | 0.946 | {'precision': 0.923803891232894, 'recall': 0.9258992795046107, 'f1-score': 0.9247117686701619, 'support': 33500.0} | {'precision': 0.9458669904374355, 'recall': 0.946, 'f1-score': 0.9458267865390921, 'support': 33500.0} |
|
108 |
+
| 0.0025 | 37.0 | 2997 | 0.4824 | {'precision': 0.8831967213114754, 'recall': 0.8979166666666667, 'f1-score': 0.8904958677685951, 'support': 1440.0} | {'precision': 0.9560696289509849, 'recall': 0.966831889563163, 'f1-score': 0.9614206416841329, 'support': 21587.0} | {'precision': 0.9296492259455222, 'recall': 0.9059486298099876, 'f1-score': 0.9176459209826394, 'support': 10473.0} | 0.9448 | {'precision': 0.9229718587359942, 'recall': 0.9235657286799391, 'f1-score': 0.9231874768117891, 'support': 33500.0} | {'precision': 0.9446774537964444, 'recall': 0.9448358208955224, 'f1-score': 0.9446867812559204, 'support': 33500.0} |
|
109 |
+
| 0.0016 | 38.0 | 3078 | 0.4953 | {'precision': 0.8720159151193634, 'recall': 0.9131944444444444, 'f1-score': 0.8921302578018996, 'support': 1440.0} | {'precision': 0.9529192772178334, 'recall': 0.9722981424005188, 'f1-score': 0.9625111778598124, 'support': 21587.0} | {'precision': 0.9420028095524784, 'recall': 0.8964002673541488, 'f1-score': 0.9186359410930084, 'support': 10473.0} | 0.9460 | {'precision': 0.9223126672965584, 'recall': 0.9272976180663707, 'f1-score': 0.9244257922515735, 'support': 33500.0} | {'precision': 0.9460288590900406, 'recall': 0.9460298507462687, 'f1-score': 0.9457692710078085, 'support': 33500.0} |
|
110 |
+
| 0.0016 | 39.0 | 3159 | 0.4956 | {'precision': 0.8796484110885734, 'recall': 0.9034722222222222, 'f1-score': 0.8914011647824598, 'support': 1440.0} | {'precision': 0.9533817521561507, 'recall': 0.9729466808727475, 'f1-score': 0.9630648600316389, 'support': 21587.0} | {'precision': 0.9421479331398258, 'recall': 0.8987873579681085, 'f1-score': 0.9199569976544176, 'support': 10473.0} | 0.9468 | {'precision': 0.9250593654615167, 'recall': 0.9250687536876927, 'f1-score': 0.9248076741561722, 'support': 33500.0} | {'precision': 0.9467003253592766, 'recall': 0.9467761194029851, 'f1-score': 0.9465077148425208, 'support': 33500.0} |
|
111 |
+
| 0.0016 | 40.0 | 3240 | 0.4843 | {'precision': 0.8838315217391305, 'recall': 0.9034722222222222, 'f1-score': 0.8935439560439561, 'support': 1440.0} | {'precision': 0.9541067200874158, 'recall': 0.9707694445731228, 'f1-score': 0.962365961745999, 'support': 21587.0} | {'precision': 0.9373012718600954, 'recall': 0.9006970304592762, 'f1-score': 0.9186346593952379, 'support': 10473.0} | 0.9460 | {'precision': 0.9250798378955473, 'recall': 0.9249795657515404, 'f1-score': 0.9248481923950643, 'support': 33500.0} | {'precision': 0.9458321008364828, 'recall': 0.9459701492537314, 'f1-score': 0.9457360627092687, 'support': 33500.0} |
|
112 |
+
| 0.0016 | 41.0 | 3321 | 0.4890 | {'precision': 0.8825938566552901, 'recall': 0.8979166666666667, 'f1-score': 0.8901893287435455, 'support': 1440.0} | {'precision': 0.9569179784589892, 'recall': 0.9630796312595543, 'f1-score': 0.9599889178768498, 'support': 21587.0} | {'precision': 0.9224949073624988, 'recall': 0.9080492695502721, 'f1-score': 0.915215089981715, 'support': 10473.0} | 0.9431 | {'precision': 0.920668914158926, 'recall': 0.9230151891588311, 'f1-score': 0.92179777886737, 'support': 33500.0} | {'precision': 0.942961573712993, 'recall': 0.9430746268656717, 'f1-score': 0.9429910758500526, 'support': 33500.0} |
|
113 |
+
| 0.0016 | 42.0 | 3402 | 0.4932 | {'precision': 0.8835942818243703, 'recall': 0.9013888888888889, 'f1-score': 0.8924028875902373, 'support': 1440.0} | {'precision': 0.9572775350655323, 'recall': 0.9642840598508362, 'f1-score': 0.9607680236314964, 'support': 21587.0} | {'precision': 0.9250437487847559, 'recall': 0.9085266876730641, 'f1-score': 0.9167108242208198, 'support': 10473.0} | 0.9441 | {'precision': 0.9219718552248861, 'recall': 0.9247332121375963, 'f1-score': 0.9232939118141844, 'support': 33500.0} | {'precision': 0.9440331073525219, 'recall': 0.9441492537313433, 'f1-score': 0.9440558789948568, 'support': 33500.0} |
|
114 |
+
| 0.0016 | 43.0 | 3483 | 0.4889 | {'precision': 0.8834688346883469, 'recall': 0.9055555555555556, 'f1-score': 0.8943758573388203, 'support': 1440.0} | {'precision': 0.956832554302997, 'recall': 0.9672488071524529, 'f1-score': 0.9620124858900229, 'support': 21587.0} | {'precision': 0.9311899627524015, 'recall': 0.9070944333046882, 'f1-score': 0.9189842805320435, 'support': 10473.0} | 0.9458 | {'precision': 0.9238304505812485, 'recall': 0.9266329320042322, 'f1-score': 0.9251242079202955, 'support': 33500.0} | {'precision': 0.945662446316296, 'recall': 0.9457910447761194, 'f1-score': 0.945653347387699, 'support': 33500.0} |
|
115 |
+
| 0.0015 | 44.0 | 3564 | 0.4940 | {'precision': 0.8824728260869565, 'recall': 0.9020833333333333, 'f1-score': 0.8921703296703297, 'support': 1440.0} | {'precision': 0.956918282231083, 'recall': 0.9672024829758651, 'f1-score': 0.9620328986776021, 'support': 21587.0} | {'precision': 0.9309432853364679, 'recall': 0.9074763678029218, 'f1-score': 0.9190600522193212, 'support': 10473.0} | 0.9457 | {'precision': 0.9234447978848358, 'recall': 0.9255873947040402, 'f1-score': 0.9244210935224176, 'support': 33500.0} | {'precision': 0.9455977568781024, 'recall': 0.9457313432835821, 'f1-score': 0.9455953846379588, 'support': 33500.0} |
|
116 |
+
| 0.0015 | 45.0 | 3645 | 0.4995 | {'precision': 0.8868438991138378, 'recall': 0.9034722222222222, 'f1-score': 0.8950808393532852, 'support': 1440.0} | {'precision': 0.9556479239939707, 'recall': 0.9691944225691388, 'f1-score': 0.9623735050597976, 'support': 21587.0} | {'precision': 0.9342209072978304, 'recall': 0.9045163754416118, 'f1-score': 0.9191287051860476, 'support': 10473.0} | 0.9461 | {'precision': 0.925570910135213, 'recall': 0.9257276734109908, 'f1-score': 0.92552768319971, 'support': 33500.0} | {'precision': 0.9459917167794611, 'recall': 0.9461492537313433, 'f1-score': 0.9459614385614344, 'support': 33500.0} |
|
117 |
+
| 0.0015 | 46.0 | 3726 | 0.5006 | {'precision': 0.8788694481830417, 'recall': 0.9069444444444444, 'f1-score': 0.8926862611073137, 'support': 1440.0} | {'precision': 0.9524392455567646, 'recall': 0.9731319775790985, 'f1-score': 0.9626744265976216, 'support': 21587.0} | {'precision': 0.9423579031934123, 'recall': 0.8960183328559153, 'f1-score': 0.918604082032206, 'support': 10473.0} | 0.9462 | {'precision': 0.9245555323110729, 'recall': 0.9253649182931527, 'f1-score': 0.9246549232457139, 'support': 33500.0} | {'precision': 0.9461251438615541, 'recall': 0.9461791044776119, 'f1-score': 0.9458884063904681, 'support': 33500.0} |
|
118 |
+
| 0.0015 | 47.0 | 3807 | 0.4959 | {'precision': 0.881596752368065, 'recall': 0.9048611111111111, 'f1-score': 0.8930774503084304, 'support': 1440.0} | {'precision': 0.9552955158385519, 'recall': 0.9681289665076204, 'f1-score': 0.9616694275722437, 'support': 21587.0} | {'precision': 0.9324790537210449, 'recall': 0.9032750883223527, 'f1-score': 0.9176447764089631, 'support': 10473.0} | 0.9451 | {'precision': 0.9231237739758873, 'recall': 0.9254217219803614, 'f1-score': 0.9241305514298791, 'support': 33500.0} | {'precision': 0.9449945299533534, 'recall': 0.945134328358209, 'f1-score': 0.9449577076052906, 'support': 33500.0} |
|
119 |
+
| 0.0015 | 48.0 | 3888 | 0.4958 | {'precision': 0.8804054054054054, 'recall': 0.9048611111111111, 'f1-score': 0.8924657534246575, 'support': 1440.0} | {'precision': 0.9550356424785231, 'recall': 0.968175290684208, 'f1-score': 0.961560580616963, 'support': 21587.0} | {'precision': 0.9326164167324388, 'recall': 0.902606702950444, 'f1-score': 0.9173661992333446, 'support': 10473.0} | 0.9450 | {'precision': 0.9226858215387891, 'recall': 0.9252143682485877, 'f1-score': 0.9237975110916551, 'support': 33500.0} | {'precision': 0.9448188038927311, 'recall': 0.944955223880597, 'f1-score': 0.9447741833815136, 'support': 33500.0} |
|
120 |
+
| 0.0015 | 49.0 | 3969 | 0.4969 | {'precision': 0.8815165876777251, 'recall': 0.9041666666666667, 'f1-score': 0.8926979773740144, 'support': 1440.0} | {'precision': 0.9562766396260141, 'recall': 0.9665539445036364, 'f1-score': 0.9613878265677557, 'support': 21587.0} | {'precision': 0.9295374362994904, 'recall': 0.9056621789363124, 'f1-score': 0.9174445035546742, 'support': 10473.0} | 0.9448 | {'precision': 0.9224435545344098, 'recall': 0.9254609300355385, 'f1-score': 0.923843435832148, 'support': 33500.0} | {'precision': 0.9447036798873807, 'recall': 0.9448358208955224, 'f1-score': 0.9446973249332784, 'support': 33500.0} |
|
121 |
+
| 0.0011 | 50.0 | 4050 | 0.4964 | {'precision': 0.8815165876777251, 'recall': 0.9041666666666667, 'f1-score': 0.8926979773740144, 'support': 1440.0} | {'precision': 0.9563064508734125, 'recall': 0.9662296752675221, 'f1-score': 0.9612424535692888, 'support': 21587.0} | {'precision': 0.9289071680376029, 'recall': 0.9057576625608708, 'f1-score': 0.9171863669325598, 'support': 10473.0} | 0.9447 | {'precision': 0.9222434021962469, 'recall': 0.9253846681650199, 'f1-score': 0.9237089326252876, 'support': 33500.0} | {'precision': 0.9445258511080028, 'recall': 0.9446567164179105, 'f1-score': 0.9445229478657765, 'support': 33500.0} |
|
122 |
|
123 |
|
124 |
### Framework versions
|