Theoreticallyhugo
commited on
Commit
•
5387e3d
1
Parent(s):
2a67433
trainer: training complete at 2024-02-17 19:28:20.117099.
Browse files- README.md +14 -19
- model.safetensors +1 -1
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,13 +32,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the fancy_dataset dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- B: {'precision': 0.
|
37 |
-
- I: {'precision': 0.
|
38 |
-
- O: {'precision': 0.
|
39 |
-
- Accuracy: 0.
|
40 |
-
- Macro avg: {'precision': 0.
|
41 |
-
- Weighted avg: {'precision': 0.
|
42 |
|
43 |
## Model description
|
44 |
|
@@ -63,22 +63,17 @@ The following hyperparameters were used during training:
|
|
63 |
- seed: 42
|
64 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
- lr_scheduler_type: linear
|
66 |
-
- num_epochs:
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
| Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg |
|
71 |
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
72 |
-
| No log | 1.0 | 41 | 0.
|
73 |
-
| No log | 2.0 | 82 | 0.
|
74 |
-
| No log | 3.0 | 123 | 0.
|
75 |
-
| No log | 4.0 | 164 | 0.
|
76 |
-
| No log | 5.0 | 205 | 0.
|
77 |
-
| No log | 6.0 | 246 | 0.1789 | {'precision': 0.846830985915493, 'recall': 0.9084041548630784, 'f1-score': 0.8765375854214124, 'support': 1059.0} | {'precision': 0.9442471984910684, 'recall': 0.9684779516358464, 'f1-score': 0.9562090952501334, 'support': 17575.0} | {'precision': 0.939179147136161, 'recall': 0.8857142857142857, 'f1-score': 0.9116635223615581, 'support': 9275.0} | 0.9387 | {'precision': 0.9100857771809073, 'recall': 0.9208654640710702, 'f1-score': 0.9148034010110346, 'support': 27909.0} | {'precision': 0.9388664988803944, 'recall': 0.9386936113798416, 'f1-score': 0.9383821463286331, 'support': 27909.0} |
|
78 |
-
| No log | 7.0 | 287 | 0.1773 | {'precision': 0.8664850136239782, 'recall': 0.9008498583569405, 'f1-score': 0.8833333333333333, 'support': 1059.0} | {'precision': 0.9508068130883012, 'recall': 0.9655761024182077, 'f1-score': 0.95813454535189, 'support': 17575.0} | {'precision': 0.9341517857142857, 'recall': 0.9024258760107817, 'f1-score': 0.9180148066904306, 'support': 9275.0} | 0.9421 | {'precision': 0.9171478708088551, 'recall': 0.9229506122619767, 'f1-score': 0.9198275617918847, 'support': 27909.0} | {'precision': 0.9420722771132855, 'recall': 0.9421333619979219, 'f1-score': 0.941963236468996, 'support': 27909.0} |
|
79 |
-
| No log | 8.0 | 328 | 0.2030 | {'precision': 0.8580413297394429, 'recall': 0.9017941454202077, 'f1-score': 0.8793738489871087, 'support': 1059.0} | {'precision': 0.9481547552681459, 'recall': 0.9677382645803698, 'f1-score': 0.957846422436854, 'support': 17575.0} | {'precision': 0.9384736960939264, 'recall': 0.8962803234501348, 'f1-score': 0.9168918546296807, 'support': 9275.0} | 0.9415 | {'precision': 0.9148899270338383, 'recall': 0.921937577816904, 'f1-score': 0.9180373753512144, 'support': 27909.0} | {'precision': 0.941518116854882, 'recall': 0.9414884087570318, 'f1-score': 0.9412583658352268, 'support': 27909.0} |
|
80 |
-
| No log | 9.0 | 369 | 0.2027 | {'precision': 0.8658759124087592, 'recall': 0.8961284230406044, 'f1-score': 0.8807424593967518, 'support': 1059.0} | {'precision': 0.956234096692112, 'recall': 0.9622190611664296, 'f1-score': 0.959217243335224, 'support': 17575.0} | {'precision': 0.928680981595092, 'recall': 0.9139622641509434, 'f1-score': 0.9212628375808294, 'support': 9275.0} | 0.9437 | {'precision': 0.9169303302319877, 'recall': 0.9241032494526591, 'f1-score': 0.9204075134376017, 'support': 27909.0} | {'precision': 0.9436487493245629, 'recall': 0.9436740836289369, 'f1-score': 0.9436261469303778, 'support': 27909.0} |
|
81 |
-
| No log | 10.0 | 410 | 0.2002 | {'precision': 0.8633879781420765, 'recall': 0.8951841359773371, 'f1-score': 0.878998609179416, 'support': 1059.0} | {'precision': 0.9522312657872579, 'recall': 0.9652347083926032, 'f1-score': 0.9586888951681265, 'support': 17575.0} | {'precision': 0.9335260115606936, 'recall': 0.9054447439353099, 'f1-score': 0.91927097586339, 'support': 9275.0} | 0.9427 | {'precision': 0.9163817518300093, 'recall': 0.9219545294350834, 'f1-score': 0.9189861600703108, 'support': 27909.0} | {'precision': 0.9426438110390537, 'recall': 0.9427066537676019, 'f1-score': 0.9425653072784325, 'support': 27909.0} |
|
82 |
|
83 |
|
84 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.9393385646207316
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the fancy_dataset dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.1675
|
36 |
+
- B: {'precision': 0.8321678321678322, 'recall': 0.898961284230406, 'f1-score': 0.864275987290059, 'support': 1059.0}
|
37 |
+
- I: {'precision': 0.9499635384529085, 'recall': 0.9635846372688478, 'f1-score': 0.956725608722671, 'support': 17575.0}
|
38 |
+
- O: {'precision': 0.9318639516670396, 'recall': 0.8980053908355795, 'f1-score': 0.9146214242573986, 'support': 9275.0}
|
39 |
+
- Accuracy: 0.9393
|
40 |
+
- Macro avg: {'precision': 0.9046651074292601, 'recall': 0.9201837707782777, 'f1-score': 0.9118743400900429, 'support': 27909.0}
|
41 |
+
- Weighted avg: {'precision': 0.939478772950926, 'recall': 0.9393385646207316, 'f1-score': 0.9392251443558882, 'support': 27909.0}
|
42 |
|
43 |
## Model description
|
44 |
|
|
|
63 |
- seed: 42
|
64 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
- lr_scheduler_type: linear
|
66 |
+
- num_epochs: 5
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
| Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg |
|
71 |
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
72 |
+
| No log | 1.0 | 41 | 0.2773 | {'precision': 0.7656804733727811, 'recall': 0.6109537299339, 'f1-score': 0.6796218487394958, 'support': 1059.0} | {'precision': 0.9200088755755256, 'recall': 0.943669985775249, 'f1-score': 0.931689230942082, 'support': 17575.0} | {'precision': 0.8860241230496846, 'recall': 0.8632884097035041, 'f1-score': 0.8745085190039319, 'support': 9275.0} | 0.9043 | {'precision': 0.8572378239993305, 'recall': 0.8059707084708844, 'f1-score': 0.82860653289517, 'support': 27909.0} | {'precision': 0.9028587678106511, 'recall': 0.9043319359346448, 'f1-score': 0.9031217272343576, 'support': 27909.0} |
|
73 |
+
| No log | 2.0 | 82 | 0.1955 | {'precision': 0.7943201376936316, 'recall': 0.8715769593956563, 'f1-score': 0.8311571364250337, 'support': 1059.0} | {'precision': 0.9362793776895068, 'recall': 0.9656330014224751, 'f1-score': 0.9507296714377748, 'support': 17575.0} | {'precision': 0.9372462591346712, 'recall': 0.8711590296495957, 'f1-score': 0.9029950827000447, 'support': 9275.0} | 0.9307 | {'precision': 0.8892819248392699, 'recall': 0.9027896634892424, 'f1-score': 0.8949606301876177, 'support': 27909.0} | {'precision': 0.9312140937398226, 'recall': 0.9306675266043212, 'f1-score': 0.9303288822614897, 'support': 27909.0} |
|
74 |
+
| No log | 3.0 | 123 | 0.1872 | {'precision': 0.7751385589865399, 'recall': 0.9244570349386213, 'f1-score': 0.8432385874246339, 'support': 1059.0} | {'precision': 0.9386327328816174, 'recall': 0.96950213371266, 'f1-score': 0.9538177339901479, 'support': 17575.0} | {'precision': 0.9483103732485576, 'recall': 0.868355795148248, 'f1-score': 0.9065736154885187, 'support': 9275.0} | 0.9342 | {'precision': 0.8873605550389051, 'recall': 0.9207716545998431, 'f1-score': 0.9012099789677669, 'support': 27909.0} | {'precision': 0.9356451584163368, 'recall': 0.9341789386936113, 'f1-score': 0.933921194690442, 'support': 27909.0} |
|
75 |
+
| No log | 4.0 | 164 | 0.1684 | {'precision': 0.8173322005097706, 'recall': 0.9084041548630784, 'f1-score': 0.8604651162790699, 'support': 1059.0} | {'precision': 0.9426896055761464, 'recall': 0.9696159317211949, 'f1-score': 0.9559631998204869, 'support': 17575.0} | {'precision': 0.9440785673021375, 'recall': 0.8809703504043127, 'f1-score': 0.9114333519241495, 'support': 9275.0} | 0.9378 | {'precision': 0.9013667911293516, 'recall': 0.9196634789961954, 'f1-score': 0.9092872226745689, 'support': 27909.0} | {'precision': 0.938394544056324, 'recall': 0.9378336737253216, 'f1-score': 0.9375409414196524, 'support': 27909.0} |
|
76 |
+
| No log | 5.0 | 205 | 0.1675 | {'precision': 0.8321678321678322, 'recall': 0.898961284230406, 'f1-score': 0.864275987290059, 'support': 1059.0} | {'precision': 0.9499635384529085, 'recall': 0.9635846372688478, 'f1-score': 0.956725608722671, 'support': 17575.0} | {'precision': 0.9318639516670396, 'recall': 0.8980053908355795, 'f1-score': 0.9146214242573986, 'support': 9275.0} | 0.9393 | {'precision': 0.9046651074292601, 'recall': 0.9201837707782777, 'f1-score': 0.9118743400900429, 'support': 27909.0} | {'precision': 0.939478772950926, 'recall': 0.9393385646207316, 'f1-score': 0.9392251443558882, 'support': 27909.0} |
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
|
79 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 592318676
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14a45a91f3842d11e7bdc72e0799d71134509fe705dfff277547ad23e8d0e0ec
|
3 |
size 592318676
|