Theoreticallyhugo commited on
Commit
4ec00ab
1 Parent(s): 9912fa6

trainer: training complete at 2024-03-04 02:27:46.081689.

Browse files
Files changed (2) hide show
  1. README.md +63 -29
  2. meta_data/README_s42_e50.md +129 -0
README.md CHANGED
@@ -17,12 +17,12 @@ model-index:
17
  name: essays_su_g
18
  type: essays_su_g
19
  config: spans
20
- split: train[80%:100%]
21
  args: spans
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.9436981787899634
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,13 +32,13 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.2879
36
- - B: {'precision': 0.8652946679139383, 'recall': 0.8868648130393096, 'f1-score': 0.8759469696969697, 'support': 1043.0}
37
- - I: {'precision': 0.9512374695588152, 'recall': 0.9680691642651297, 'f1-score': 0.9595795126688947, 'support': 17350.0}
38
- - O: {'precision': 0.9381536039581694, 'recall': 0.9042922176457836, 'f1-score': 0.9209117500965837, 'support': 9226.0}
39
- - Accuracy: 0.9437
40
- - Macro avg: {'precision': 0.9182285804769742, 'recall': 0.9197420649834077, 'f1-score': 0.9188127441541494, 'support': 27619.0}
41
- - Weighted avg: {'precision': 0.9436213326187679, 'recall': 0.9436981787899634, 'f1-score': 0.9435044368221277, 'support': 27619.0}
42
 
43
  ## Model description
44
 
@@ -63,33 +63,67 @@ The following hyperparameters were used during training:
63
  - seed: 42
64
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
  - lr_scheduler_type: linear
66
- - num_epochs: 16
67
 
68
  ### Training results
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg |
71
  |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
72
- | No log | 1.0 | 41 | 0.2947 | {'precision': 0.8076923076923077, 'recall': 0.4429530201342282, 'f1-score': 0.5721362229102167, 'support': 1043.0} | {'precision': 0.8850358282336942, 'recall': 0.9752737752161383, 'f1-score': 0.927966217883682, 'support': 17350.0} | {'precision': 0.9349142280524723, 'recall': 0.8033817472360719, 'f1-score': 0.864171621779177, 'support': 9226.0} | 0.8978 | {'precision': 0.8758807879928246, 'recall': 0.7405361808621462, 'f1-score': 0.7880913541910252, 'support': 27619.0} | {'precision': 0.8987766886849552, 'recall': 0.8977515478474963, 'f1-score': 0.8932184128068332, 'support': 27619.0} |
73
- | No log | 2.0 | 82 | 0.1954 | {'precision': 0.7979274611398963, 'recall': 0.8859060402684564, 'f1-score': 0.8396183552930486, 'support': 1043.0} | {'precision': 0.9369951534733441, 'recall': 0.9694524495677234, 'f1-score': 0.9529475085691623, 'support': 17350.0} | {'precision': 0.9441833137485312, 'recall': 0.8709083026230219, 'f1-score': 0.9060667568786648, 'support': 9226.0} | 0.9334 | {'precision': 0.8930353094539237, 'recall': 0.9087555974864006, 'f1-score': 0.8995442069136251, 'support': 27619.0} | {'precision': 0.9341445927577168, 'recall': 0.9333791954813715, 'f1-score': 0.933007462877301, 'support': 27619.0} |
74
- | No log | 3.0 | 123 | 0.1738 | {'precision': 0.856203007518797, 'recall': 0.8734419942473634, 'f1-score': 0.8647365923113433, 'support': 1043.0} | {'precision': 0.9658622719246616, 'recall': 0.945821325648415, 'f1-score': 0.9557367501456028, 'support': 17350.0} | {'precision': 0.9021432305279665, 'recall': 0.9352915673097767, 'f1-score': 0.9184183917833005, 'support': 9226.0} | 0.9396 | {'precision': 0.9080695033238083, 'recall': 0.9181849624018517, 'f1-score': 0.9129639114134155, 'support': 27619.0} | {'precision': 0.940436062116152, 'recall': 0.9395705854665267, 'f1-score': 0.9398342070096555, 'support': 27619.0} |
75
- | No log | 4.0 | 164 | 0.1750 | {'precision': 0.8874239350912779, 'recall': 0.8389261744966443, 'f1-score': 0.862493839329719, 'support': 1043.0} | {'precision': 0.9537671232876712, 'recall': 0.9631123919308358, 'f1-score': 0.9584169773444221, 'support': 17350.0} | {'precision': 0.926259190167892, 'recall': 0.9149143724257534, 'f1-score': 0.9205518294345384, 'support': 9226.0} | 0.9423 | {'precision': 0.9224834161822804, 'recall': 0.9056509796177444, 'f1-score': 0.9138208820362266, 'support': 27619.0} | {'precision': 0.9420728499160095, 'recall': 0.9423223143488179, 'f1-score': 0.9421458709478862, 'support': 27619.0} |
76
- | No log | 5.0 | 205 | 0.2035 | {'precision': 0.8457399103139014, 'recall': 0.9041227229146692, 'f1-score': 0.8739573679332716, 'support': 1043.0} | {'precision': 0.9367580161988239, 'recall': 0.9732564841498559, 'f1-score': 0.954658525554048, 'support': 17350.0} | {'precision': 0.948690728945506, 'recall': 0.8717754172989378, 'f1-score': 0.9086082241301401, 'support': 9226.0} | 0.9367 | {'precision': 0.9103962184860771, 'recall': 0.916384874787821, 'f1-score': 0.9124080392058199, 'support': 27619.0} | {'precision': 0.9373068891979518, 'recall': 0.9367464426662805, 'f1-score': 0.9362280469583188, 'support': 27619.0} |
77
- | No log | 6.0 | 246 | 0.1896 | {'precision': 0.8579335793357934, 'recall': 0.8916586768935763, 'f1-score': 0.8744710860366715, 'support': 1043.0} | {'precision': 0.9394277427631212, 'recall': 0.970778097982709, 'f1-score': 0.9548456588905582, 'support': 17350.0} | {'precision': 0.941900999302812, 'recall': 0.8786039453717754, 'f1-score': 0.9091520861372813, 'support': 9226.0} | 0.9370 | {'precision': 0.9130874404672422, 'recall': 0.9136802400826869, 'f1-score': 0.9128229436881702, 'support': 27619.0} | {'precision': 0.9371763887090455, 'recall': 0.9369998913791231, 'f1-score': 0.9365466769683909, 'support': 27619.0} |
78
- | No log | 7.0 | 287 | 0.1974 | {'precision': 0.854262144821265, 'recall': 0.8935762224352828, 'f1-score': 0.8734770384254921, 'support': 1043.0} | {'precision': 0.9436012321478577, 'recall': 0.9710662824207493, 'f1-score': 0.9571367703451216, 'support': 17350.0} | {'precision': 0.9436181252161882, 'recall': 0.8870583134619553, 'f1-score': 0.9144644952231968, 'support': 9226.0} | 0.9401 | {'precision': 0.9138271673951035, 'recall': 0.9172336061059957, 'f1-score': 0.9150261013312702, 'support': 27619.0} | {'precision': 0.9402330865729558, 'recall': 0.9400774828922119, 'f1-score': 0.9397229787282255, 'support': 27619.0} |
79
- | No log | 8.0 | 328 | 0.2392 | {'precision': 0.851952770208901, 'recall': 0.8993288590604027, 'f1-score': 0.875, 'support': 1043.0} | {'precision': 0.9332269074094462, 'recall': 0.9771181556195966, 'f1-score': 0.9546683185043361, 'support': 17350.0} | {'precision': 0.9541427203065134, 'recall': 0.8637546065467158, 'f1-score': 0.90670155876664, 'support': 9226.0} | 0.9363 | {'precision': 0.9131074659749535, 'recall': 0.913400540408905, 'f1-score': 0.9121232924236587, 'support': 27619.0} | {'precision': 0.937144513575063, 'recall': 0.9363119591585503, 'f1-score': 0.9356366598077863, 'support': 27619.0} |
80
- | No log | 9.0 | 369 | 0.2588 | {'precision': 0.8356890459363958, 'recall': 0.9069990412272292, 'f1-score': 0.8698850574712644, 'support': 1043.0} | {'precision': 0.9281042189033032, 'recall': 0.9813832853025937, 'f1-score': 0.9540004482294935, 'support': 17350.0} | {'precision': 0.9629038201695124, 'recall': 0.8496639930630826, 'f1-score': 0.9027465883572292, 'support': 9226.0} | 0.9346 | {'precision': 0.9088990283364038, 'recall': 0.9126821065309684, 'f1-score': 0.9088773646859957, 'support': 27619.0} | {'precision': 0.9362389122621345, 'recall': 0.9345740251276295, 'f1-score': 0.9337028102359982, 'support': 27619.0} |
81
- | No log | 10.0 | 410 | 0.2737 | {'precision': 0.8562091503267973, 'recall': 0.8791946308724832, 'f1-score': 0.8675496688741721, 'support': 1043.0} | {'precision': 0.9356232686980609, 'recall': 0.973371757925072, 'f1-score': 0.9541242937853106, 'support': 17350.0} | {'precision': 0.9457519416333255, 'recall': 0.8711250812920008, 'f1-score': 0.9069058903182126, 'support': 9226.0} | 0.9357 | {'precision': 0.9125281202193946, 'recall': 0.9078971566965187, 'f1-score': 0.9095266176592318, 'support': 27619.0} | {'precision': 0.9360077218295835, 'recall': 0.935660233896955, 'f1-score': 0.9350818112852286, 'support': 27619.0} |
82
- | No log | 11.0 | 451 | 0.2722 | {'precision': 0.8556701030927835, 'recall': 0.87535953978907, 'f1-score': 0.8654028436018957, 'support': 1043.0} | {'precision': 0.9378157792460163, 'recall': 0.9735446685878962, 'f1-score': 0.9553462854557281, 'support': 17350.0} | {'precision': 0.9459079733052336, 'recall': 0.8756774333405593, 'f1-score': 0.9094388473011763, 'support': 9226.0} | 0.9371 | {'precision': 0.9131312852146779, 'recall': 0.9081938805725085, 'f1-score': 0.9100626587862667, 'support': 27619.0} | {'precision': 0.937416801808836, 'recall': 0.9371447192150332, 'f1-score': 0.9366145053671137, 'support': 27619.0} |
83
- | No log | 12.0 | 492 | 0.2749 | {'precision': 0.8612933458294283, 'recall': 0.8811121764141898, 'f1-score': 0.8710900473933649, 'support': 1043.0} | {'precision': 0.9410812921943871, 'recall': 0.9721613832853025, 'f1-score': 0.9563688940549427, 'support': 17350.0} | {'precision': 0.9440259589755475, 'recall': 0.8829395187513549, 'f1-score': 0.9124614953794455, 'support': 9226.0} | 0.9389 | {'precision': 0.9154668656664544, 'recall': 0.9120710261502823, 'f1-score': 0.9133068122759177, 'support': 27619.0} | {'precision': 0.9390518439038746, 'recall': 0.9389188602049314, 'f1-score': 0.938481371072642, 'support': 27619.0} |
84
- | 0.1235 | 13.0 | 533 | 0.2709 | {'precision': 0.8675925925925926, 'recall': 0.8983700862895494, 'f1-score': 0.8827131417804992, 'support': 1043.0} | {'precision': 0.9542141230068337, 'recall': 0.9657636887608069, 'f1-score': 0.959954167860212, 'support': 17350.0} | {'precision': 0.9354048335003898, 'recall': 0.9103620203771949, 'f1-score': 0.9227135402361988, 'support': 9226.0} | 0.9447 | {'precision': 0.9190705163666054, 'recall': 0.9248319318091838, 'f1-score': 0.9217936166256367, 'support': 27619.0} | {'precision': 0.9446598031108019, 'recall': 0.9447119736413339, 'f1-score': 0.944597188220823, 'support': 27619.0} |
85
- | 0.1235 | 14.0 | 574 | 0.2806 | {'precision': 0.8703878902554399, 'recall': 0.8820709491850431, 'f1-score': 0.8761904761904762, 'support': 1043.0} | {'precision': 0.9522888825703725, 'recall': 0.9651873198847263, 'f1-score': 0.9586947187634179, 'support': 17350.0} | {'precision': 0.9327169432995432, 'recall': 0.9075438976804683, 'f1-score': 0.919958248640334, 'support': 9226.0} | 0.9428 | {'precision': 0.9184645720417852, 'recall': 0.918267388916746, 'f1-score': 0.9182811478647427, 'support': 27619.0} | {'precision': 0.942658068757521, 'recall': 0.9427930048155255, 'f1-score': 0.9426393004514172, 'support': 27619.0} |
86
- | 0.1235 | 15.0 | 615 | 0.2848 | {'precision': 0.865546218487395, 'recall': 0.8887823585810163, 'f1-score': 0.8770104068117313, 'support': 1043.0} | {'precision': 0.9523728525259398, 'recall': 0.9681268011527377, 'f1-score': 0.9601852116500414, 'support': 17350.0} | {'precision': 0.9386151947031759, 'recall': 0.9065683936700628, 'f1-score': 0.9223135027843635, 'support': 9226.0} | 0.9446 | {'precision': 0.9188447552388369, 'recall': 0.921159184467939, 'f1-score': 0.9198363737487121, 'support': 27619.0} | {'precision': 0.9444982614699631, 'recall': 0.9445671458054238, 'f1-score': 0.9443933398429122, 'support': 27619.0} |
87
- | 0.1235 | 16.0 | 656 | 0.2879 | {'precision': 0.8652946679139383, 'recall': 0.8868648130393096, 'f1-score': 0.8759469696969697, 'support': 1043.0} | {'precision': 0.9512374695588152, 'recall': 0.9680691642651297, 'f1-score': 0.9595795126688947, 'support': 17350.0} | {'precision': 0.9381536039581694, 'recall': 0.9042922176457836, 'f1-score': 0.9209117500965837, 'support': 9226.0} | 0.9437 | {'precision': 0.9182285804769742, 'recall': 0.9197420649834077, 'f1-score': 0.9188127441541494, 'support': 27619.0} | {'precision': 0.9436213326187679, 'recall': 0.9436981787899634, 'f1-score': 0.9435044368221277, 'support': 27619.0} |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
 
90
  ### Framework versions
91
 
92
- - Transformers 4.37.2
93
- - Pytorch 2.2.0+cu121
94
- - Datasets 2.17.0
95
  - Tokenizers 0.15.2
 
17
  name: essays_su_g
18
  type: essays_su_g
19
  config: spans
20
+ split: train[0%:20%]
21
  args: spans
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.9304561259971365
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.6554
36
+ - B: {'precision': 0.8511354079058032, 'recall': 0.8932038834951457, 'f1-score': 0.8716623600344531, 'support': 1133.0}
37
+ - I: {'precision': 0.9360508205399682, 'recall': 0.9644902634593356, 'f1-score': 0.9500577599871047, 'support': 18333.0}
38
+ - O: {'precision': 0.9292274446245273, 'recall': 0.8715038508309688, 'f1-score': 0.8994404643622863, 'support': 9868.0}
39
+ - Accuracy: 0.9305
40
+ - Macro avg: {'precision': 0.9054712243567663, 'recall': 0.9097326659284835, 'f1-score': 0.907053528127948, 'support': 29334.0}
41
+ - Weighted avg: {'precision': 0.9304756437468926, 'recall': 0.9304561259971365, 'f1-score': 0.9300020750695325, 'support': 29334.0}
42
 
43
  ## Model description
44
 
 
63
  - seed: 42
64
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
  - lr_scheduler_type: linear
66
+ - num_epochs: 50
67
 
68
  ### Training results
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg |
71
  |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
72
+ | No log | 1.0 | 81 | 0.2531 | {'precision': 0.7474747474747475, 'recall': 0.9143865842894969, 'f1-score': 0.8225486304088924, 'support': 1133.0} | {'precision': 0.9081643158653351, 'recall': 0.9623084056073746, 'f1-score': 0.9344527132604147, 'support': 18333.0} | {'precision': 0.9300633654071814, 'recall': 0.8032022699635184, 'f1-score': 0.8619902120717781, 'support': 9868.0} | 0.9069 | {'precision': 0.8619008095824213, 'recall': 0.89329908662013, 'f1-score': 0.8729971852470283, 'support': 29334.0} | {'precision': 0.9093246942621582, 'recall': 0.9069339333196973, 'f1-score': 0.9057540261532953, 'support': 29334.0} |
73
+ | No log | 2.0 | 162 | 0.2078 | {'precision': 0.8297520661157025, 'recall': 0.8861429832303619, 'f1-score': 0.8570209133589416, 'support': 1133.0} | {'precision': 0.9325182597650048, 'recall': 0.9610538373424972, 'f1-score': 0.9465710371504554, 'support': 18333.0} | {'precision': 0.9238353196099675, 'recall': 0.8641062018646128, 'f1-score': 0.8929730861870352, 'support': 9868.0} | 0.9255 | {'precision': 0.8953685484968915, 'recall': 0.9037676741458239, 'f1-score': 0.898855012232144, 'support': 29334.0} | {'precision': 0.9256280521269545, 'recall': 0.9255471466557578, 'f1-score': 0.9250818140522481, 'support': 29334.0} |
74
+ | No log | 3.0 | 243 | 0.2431 | {'precision': 0.8289473684210527, 'recall': 0.8896734333627537, 'f1-score': 0.8582375478927203, 'support': 1133.0} | {'precision': 0.92943782301445, 'recall': 0.9613265695739922, 'f1-score': 0.9451132859632658, 'support': 18333.0} | {'precision': 0.923219746614242, 'recall': 0.8566072152411837, 'f1-score': 0.8886669470142977, 'support': 9868.0} | 0.9233 | {'precision': 0.8938683126832482, 'recall': 0.9025357393926431, 'f1-score': 0.8973392602900946, 'support': 29334.0} | {'precision': 0.9234646975296347, 'recall': 0.9233312879252744, 'f1-score': 0.9227691568304388, 'support': 29334.0} |
75
+ | No log | 4.0 | 324 | 0.2805 | {'precision': 0.8503869303525365, 'recall': 0.8729037952338923, 'f1-score': 0.8614982578397212, 'support': 1133.0} | {'precision': 0.9574755315558555, 'recall': 0.9284896089019801, 'f1-score': 0.942759823876381, 'support': 18333.0} | {'precision': 0.8724141248917541, 'recall': 0.9188285366842318, 'f1-score': 0.8950199891417008, 'support': 9868.0} | 0.9231 | {'precision': 0.8934255289333821, 'recall': 0.9067406469400346, 'f1-score': 0.8997593569526009, 'support': 29334.0} | {'precision': 0.9247245481875896, 'recall': 0.9230926569850685, 'f1-score': 0.9235614178123817, 'support': 29334.0} |
76
+ | No log | 5.0 | 405 | 0.2743 | {'precision': 0.8405063291139241, 'recall': 0.8790820829655781, 'f1-score': 0.8593615185504745, 'support': 1133.0} | {'precision': 0.9325283338629382, 'recall': 0.9604538264332079, 'f1-score': 0.9462851000940481, 'support': 18333.0} | {'precision': 0.921333764972483, 'recall': 0.8652209160924199, 'f1-score': 0.8923961327410503, 'support': 9868.0} | 0.9253 | {'precision': 0.8981228093164484, 'recall': 0.9015856084970686, 'f1-score': 0.899347583795191, 'support': 29334.0} | {'precision': 0.92520819555273, 'recall': 0.9252744255812367, 'f1-score': 0.9247994265504382, 'support': 29334.0} |
77
+ | No log | 6.0 | 486 | 0.2924 | {'precision': 0.8355481727574751, 'recall': 0.8879082082965578, 'f1-score': 0.8609328198545143, 'support': 1133.0} | {'precision': 0.9304343225942971, 'recall': 0.9593628975072274, 'f1-score': 0.9446771941132237, 'support': 18333.0} | {'precision': 0.9198005852389726, 'recall': 0.8600526955816782, 'f1-score': 0.8889238020424195, 'support': 9868.0} | 0.9232 | {'precision': 0.8952610268635816, 'recall': 0.9024412671284878, 'f1-score': 0.8981779386700525, 'support': 29334.0} | {'precision': 0.923192223733335, 'recall': 0.9231949273880139, 'f1-score': 0.9226871194902669, 'support': 29334.0} |
78
+ | 0.1596 | 7.0 | 567 | 0.3490 | {'precision': 0.8356729975227085, 'recall': 0.8932038834951457, 'f1-score': 0.863481228668942, 'support': 1133.0} | {'precision': 0.93515484621076, 'recall': 0.9651993672612229, 'f1-score': 0.949939605422091, 'support': 18333.0} | {'precision': 0.930659710900989, 'recall': 0.8677543575192541, 'f1-score': 0.8981068750327758, 'support': 9868.0} | 0.9296 | {'precision': 0.9004958515448193, 'recall': 0.9087192027585408, 'f1-score': 0.9038425697079363, 'support': 29334.0} | {'precision': 0.9298002771168626, 'recall': 0.9296379627735734, 'f1-score': 0.9291636210918572, 'support': 29334.0} |
79
+ | 0.1596 | 8.0 | 648 | 0.3490 | {'precision': 0.8596491228070176, 'recall': 0.8649602824360106, 'f1-score': 0.8622965244170699, 'support': 1133.0} | {'precision': 0.9429824561403509, 'recall': 0.9499263622974963, 'f1-score': 0.946441672780631, 'support': 18333.0} | {'precision': 0.9021180341353074, 'recall': 0.8891366031617349, 'f1-score': 0.8955802796774524, 'support': 9868.0} | 0.9262 | {'precision': 0.9015832043608919, 'recall': 0.9013410826317473, 'f1-score': 0.9014394922917178, 'support': 29334.0} | {'precision': 0.9260169286632788, 'recall': 0.9261948592077452, 'f1-score': 0.926081794133393, 'support': 29334.0} |
80
+ | 0.1596 | 9.0 | 729 | 0.4179 | {'precision': 0.8520408163265306, 'recall': 0.884377758164166, 'f1-score': 0.8679081853616285, 'support': 1133.0} | {'precision': 0.9287558623596985, 'recall': 0.9613811160202913, 'f1-score': 0.9447869203966764, 'support': 18333.0} | {'precision': 0.9209236466615837, 'recall': 0.8568098905553304, 'f1-score': 0.887710640978529, 'support': 9868.0} | 0.9232 | {'precision': 0.9005734417826042, 'recall': 0.9008562549132626, 'f1-score': 0.900135248912278, 'support': 29334.0} | {'precision': 0.9231580423670424, 'recall': 0.923229017522329, 'f1-score': 0.9226170038461553, 'support': 29334.0} |
81
+ | 0.1596 | 10.0 | 810 | 0.5158 | {'precision': 0.822257806244996, 'recall': 0.9064430714916152, 'f1-score': 0.8623005877413936, 'support': 1133.0} | {'precision': 0.9124053998772755, 'recall': 0.9732722413134784, 'f1-score': 0.9418564754942067, 'support': 18333.0} | {'precision': 0.9440731621526557, 'recall': 0.8159708147547629, 'f1-score': 0.8753601130619123, 'support': 9868.0} | 0.9178 | {'precision': 0.8929121227583091, 'recall': 0.8985620425199521, 'f1-score': 0.8931723920991709, 'support': 29334.0} | {'precision': 0.9195766092093843, 'recall': 0.9177745960319084, 'f1-score': 0.9164142267280712, 'support': 29334.0} |
82
+ | 0.1596 | 11.0 | 891 | 0.4279 | {'precision': 0.8556611927398444, 'recall': 0.8737864077669902, 'f1-score': 0.8646288209606986, 'support': 1133.0} | {'precision': 0.9373558594797533, 'recall': 0.9533082419680358, 'f1-score': 0.9452647520147115, 'support': 18333.0} | {'precision': 0.9077843054972723, 'recall': 0.8768747466558573, 'f1-score': 0.8920618556701031, 'support': 9868.0} | 0.9245 | {'precision': 0.9002671192389567, 'recall': 0.9013231321302945, 'f1-score': 0.9006518095485044, 'support': 29334.0} | {'precision': 0.9242525611871427, 'recall': 0.924524442626304, 'f1-score': 0.9242527287307136, 'support': 29334.0} |
83
+ | 0.1596 | 12.0 | 972 | 0.4510 | {'precision': 0.842237061769616, 'recall': 0.8905560458958517, 'f1-score': 0.8657228657228657, 'support': 1133.0} | {'precision': 0.9381618860092598, 'recall': 0.9615993018054874, 'f1-score': 0.9497360198254499, 'support': 18333.0} | {'precision': 0.9247726056714821, 'recall': 0.8757600324280502, 'f1-score': 0.8995992296882319, 'support': 9868.0} | 0.9300 | {'precision': 0.9017238511501193, 'recall': 0.9093051267097964, 'f1-score': 0.9050193717455158, 'support': 29334.0} | {'precision': 0.9299527006190401, 'recall': 0.9299788641167246, 'f1-score': 0.9296249968257807, 'support': 29334.0} |
84
+ | 0.0211 | 13.0 | 1053 | 0.4814 | {'precision': 0.856898029134533, 'recall': 0.8826125330979699, 'f1-score': 0.8695652173913043, 'support': 1133.0} | {'precision': 0.9383210509452099, 'recall': 0.958435607920144, 'f1-score': 0.9482716748967862, 'support': 18333.0} | {'precision': 0.9175934752674505, 'recall': 0.877888123226591, 'f1-score': 0.8973017763737118, 'support': 9868.0} | 0.9284 | {'precision': 0.9042708517823977, 'recall': 0.9063120880815684, 'f1-score': 0.9050462228872674, 'support': 29334.0} | {'precision': 0.9282033717845217, 'recall': 0.9284107179382287, 'f1-score': 0.9280853595296557, 'support': 29334.0} |
85
+ | 0.0211 | 14.0 | 1134 | 0.4911 | {'precision': 0.8470688190314358, 'recall': 0.8799646954986761, 'f1-score': 0.8632034632034632, 'support': 1133.0} | {'precision': 0.9397603195739015, 'recall': 0.9624174984999727, 'f1-score': 0.9509539721892853, 'support': 18333.0} | {'precision': 0.925708804092944, 'recall': 0.8801175516822051, 'f1-score': 0.9023376623376623, 'support': 9868.0} | 0.9315 | {'precision': 0.9041793142327604, 'recall': 0.9074999152269513, 'f1-score': 0.905498365910137, 'support': 29334.0} | {'precision': 0.9314532416138313, 'recall': 0.9315470102952206, 'f1-score': 0.9312100889037889, 'support': 29334.0} |
86
+ | 0.0211 | 15.0 | 1215 | 0.4775 | {'precision': 0.8397009966777409, 'recall': 0.8923212709620476, 'f1-score': 0.865211810012837, 'support': 1133.0} | {'precision': 0.9259123897039628, 'recall': 0.9673266786668848, 'f1-score': 0.9461665688523716, 'support': 18333.0} | {'precision': 0.9330511306672608, 'recall': 0.8488042156465343, 'f1-score': 0.8889360573096311, 'support': 9868.0} | 0.9246 | {'precision': 0.8995548390163215, 'recall': 0.9028173884251555, 'f1-score': 0.9001048120582799, 'support': 29334.0} | {'precision': 0.9249840331050372, 'recall': 0.9245585327606191, 'f1-score': 0.9237873355507777, 'support': 29334.0} |
87
+ | 0.0211 | 16.0 | 1296 | 0.5006 | {'precision': 0.8545611015490534, 'recall': 0.8764342453662842, 'f1-score': 0.865359477124183, 'support': 1133.0} | {'precision': 0.9472161572052402, 'recall': 0.9465444826269569, 'f1-score': 0.9468802008021172, 'support': 18333.0} | {'precision': 0.8979902557856273, 'recall': 0.8965342521280908, 'f1-score': 0.897261663286004, 'support': 9868.0} | 0.9270 | {'precision': 0.8999225048466403, 'recall': 0.9065043267071107, 'f1-score': 0.9031671137374347, 'support': 29334.0} | {'precision': 0.9270777726253262, 'recall': 0.9270130224313083, 'f1-score': 0.9270397866705257, 'support': 29334.0} |
88
+ | 0.0211 | 17.0 | 1377 | 0.5324 | {'precision': 0.8460891505466779, 'recall': 0.8879082082965578, 'f1-score': 0.8664944013781224, 'support': 1133.0} | {'precision': 0.9300636741567121, 'recall': 0.9640538918889434, 'f1-score': 0.9467538032997642, 'support': 18333.0} | {'precision': 0.9267118792386786, 'recall': 0.8585326307255776, 'f1-score': 0.8913203577064702, 'support': 9868.0} | 0.9256 | {'precision': 0.9009549013140229, 'recall': 0.9034982436370264, 'f1-score': 0.901522854128119, 'support': 29334.0} | {'precision': 0.9256926832416877, 'recall': 0.9256153269243881, 'f1-score': 0.9250059631316369, 'support': 29334.0} |
89
+ | 0.0211 | 18.0 | 1458 | 0.5886 | {'precision': 0.8499142367066895, 'recall': 0.8746690203000883, 'f1-score': 0.8621139625924314, 'support': 1133.0} | {'precision': 0.9357597135374913, 'recall': 0.9550537282496045, 'f1-score': 0.945308282042976, 'support': 18333.0} | {'precision': 0.910013746431215, 'recall': 0.872111876773409, 'f1-score': 0.8906597671410089, 'support': 9868.0} | 0.9240 | {'precision': 0.8985625655584654, 'recall': 0.9006115417743672, 'f1-score': 0.8993606705921388, 'support': 29334.0} | {'precision': 0.9237830268035296, 'recall': 0.9240471807458921, 'f1-score': 0.9237111350807452, 'support': 29334.0} |
90
+ | 0.0054 | 19.0 | 1539 | 0.5662 | {'precision': 0.8524871355060034, 'recall': 0.8773168578993822, 'f1-score': 0.8647237929534581, 'support': 1133.0} | {'precision': 0.9394004397490213, 'recall': 0.9554900998199968, 'f1-score': 0.9473769605191995, 'support': 18333.0} | {'precision': 0.9122991282428317, 'recall': 0.8802188893392785, 'f1-score': 0.8959719428541957, 'support': 9868.0} | 0.9271 | {'precision': 0.9013955678326188, 'recall': 0.9043419490195524, 'f1-score': 0.9026908987756178, 'support': 29334.0} | {'precision': 0.9269265693034491, 'recall': 0.9271493829685689, 'f1-score': 0.9268918322322205, 'support': 29334.0} |
91
+ | 0.0054 | 20.0 | 1620 | 0.5481 | {'precision': 0.8527397260273972, 'recall': 0.8790820829655781, 'f1-score': 0.8657105606258149, 'support': 1133.0} | {'precision': 0.9360140418062869, 'recall': 0.9599083619702177, 'f1-score': 0.9478106317660365, 'support': 18333.0} | {'precision': 0.9194874532835025, 'recall': 0.8726185650587759, 'f1-score': 0.8954401289450424, 'support': 9868.0} | 0.9274 | {'precision': 0.9027470737057288, 'recall': 0.9038696699981905, 'f1-score': 0.902987107112298, 'support': 29334.0} | {'precision': 0.9272380761923127, 'recall': 0.9274221040430899, 'f1-score': 0.9270220757409653, 'support': 29334.0} |
92
+ | 0.0054 | 21.0 | 1701 | 0.5435 | {'precision': 0.851027397260274, 'recall': 0.8773168578993822, 'f1-score': 0.8639721860060844, 'support': 1133.0} | {'precision': 0.9310981074384522, 'recall': 0.9633993345333551, 'f1-score': 0.9469733526352474, 'support': 18333.0} | {'precision': 0.9250842666086767, 'recall': 0.8621807863802189, 'f1-score': 0.8925255704169944, 'support': 9868.0} | 0.9260 | {'precision': 0.9024032571024675, 'recall': 0.9009656596043186, 'f1-score': 0.9011570363527754, 'support': 29334.0} | {'precision': 0.925982381797895, 'recall': 0.9260244085361696, 'f1-score': 0.9254511927961336, 'support': 29334.0} |
93
+ | 0.0054 | 22.0 | 1782 | 0.5495 | {'precision': 0.8664323374340949, 'recall': 0.8702559576345984, 'f1-score': 0.8683399383531484, 'support': 1133.0} | {'precision': 0.954357075758413, 'recall': 0.9420716740304369, 'f1-score': 0.9481745813889652, 'support': 18333.0} | {'precision': 0.8916724428161205, 'recall': 0.912545601945683, 'f1-score': 0.9019882806630942, 'support': 9868.0} | 0.9294 | {'precision': 0.9041539520028761, 'recall': 0.9082910778702393, 'f1-score': 0.9061676001350693, 'support': 29334.0} | {'precision': 0.9298738587952988, 'recall': 0.9293652416990523, 'f1-score': 0.9295539000593656, 'support': 29334.0} |
94
+ | 0.0054 | 23.0 | 1863 | 0.5612 | {'precision': 0.8410981697171381, 'recall': 0.8923212709620476, 'f1-score': 0.8659528907922912, 'support': 1133.0} | {'precision': 0.9308765464595946, 'recall': 0.9644902634593356, 'f1-score': 0.9473853407629661, 'support': 18333.0} | {'precision': 0.9287512312575243, 'recall': 0.8599513579246048, 'f1-score': 0.893028150486714, 'support': 9868.0} | 0.9265 | {'precision': 0.9002419824780857, 'recall': 0.905587630781996, 'f1-score': 0.9021221273473238, 'support': 29334.0} | {'precision': 0.9266939763613048, 'recall': 0.9265357605508966, 'f1-score': 0.9259542464879668, 'support': 29334.0} |
95
+ | 0.0054 | 24.0 | 1944 | 0.5436 | {'precision': 0.8559102674719585, 'recall': 0.8755516328331863, 'f1-score': 0.8656195462478184, 'support': 1133.0} | {'precision': 0.9425299715069082, 'recall': 0.9563082965144821, 'f1-score': 0.9493691449612822, 'support': 18333.0} | {'precision': 0.9138291205347817, 'recall': 0.8866031617349007, 'f1-score': 0.9000102870075095, 'support': 9868.0} | 0.9297 | {'precision': 0.9040897865045494, 'recall': 0.9061543636941897, 'f1-score': 0.9049996594055368, 'support': 29334.0} | {'precision': 0.9295293537232939, 'recall': 0.9297402331765187, 'f1-score': 0.9295299990681146, 'support': 29334.0} |
96
+ | 0.003 | 25.0 | 2025 | 0.5901 | {'precision': 0.8486897717666948, 'recall': 0.8861429832303619, 'f1-score': 0.8670120898100172, 'support': 1133.0} | {'precision': 0.9339209373515596, 'recall': 0.9651993672612229, 'f1-score': 0.9493025751072961, 'support': 18333.0} | {'precision': 0.9293785310734464, 'recall': 0.8668423186055938, 'f1-score': 0.8970218120805369, 'support': 9868.0} | 0.9291 | {'precision': 0.9039964133972336, 'recall': 0.9060615563657262, 'f1-score': 0.9044454923326167, 'support': 29334.0} | {'precision': 0.9291008863608976, 'recall': 0.9290584304902161, 'f1-score': 0.9285368530990505, 'support': 29334.0} |
97
+ | 0.003 | 26.0 | 2106 | 0.5823 | {'precision': 0.8599487617421008, 'recall': 0.8887908208296558, 'f1-score': 0.8741319444444444, 'support': 1133.0} | {'precision': 0.9412236174191825, 'recall': 0.960835651557301, 'f1-score': 0.9509285251565537, 'support': 18333.0} | {'precision': 0.9222057578323455, 'recall': 0.8829550060802595, 'f1-score': 0.9021536550010354, 'support': 9868.0} | 0.9319 | {'precision': 0.9077927123312096, 'recall': 0.9108604928224054, 'f1-score': 0.9090713748673446, 'support': 29334.0} | {'precision': 0.931686812009588, 'recall': 0.9318538215040567, 'f1-score': 0.9315543878196246, 'support': 29334.0} |
98
+ | 0.003 | 27.0 | 2187 | 0.5752 | {'precision': 0.8514767932489451, 'recall': 0.8905560458958517, 'f1-score': 0.8705780845556514, 'support': 1133.0} | {'precision': 0.9362391165852623, 'recall': 0.9619265804832815, 'f1-score': 0.9489090371008098, 'support': 18333.0} | {'precision': 0.9241919896918286, 'recall': 0.8722132144304824, 'f1-score': 0.8974506021583858, 'support': 9868.0} | 0.9290 | {'precision': 0.903969299842012, 'recall': 0.9082319469365384, 'f1-score': 0.9056459079382823, 'support': 29334.0} | {'precision': 0.9289125753524113, 'recall': 0.9289902502215859, 'f1-score': 0.9285728809255351, 'support': 29334.0} |
99
+ | 0.003 | 28.0 | 2268 | 0.5861 | {'precision': 0.8589965397923875, 'recall': 0.8764342453662842, 'f1-score': 0.8676277850589778, 'support': 1133.0} | {'precision': 0.941451361658699, 'recall': 0.956035564282987, 'f1-score': 0.9486874154262517, 'support': 18333.0} | {'precision': 0.9131889969668445, 'recall': 0.8847790839075801, 'f1-score': 0.8987595861855989, 'support': 9868.0} | 0.9290 | {'precision': 0.9045456328059771, 'recall': 0.9057496311856171, 'f1-score': 0.9050249288902762, 'support': 29334.0} | {'precision': 0.9287591162113087, 'recall': 0.9289902502215859, 'f1-score': 0.928760764435835, 'support': 29334.0} |
100
+ | 0.003 | 29.0 | 2349 | 0.6105 | {'precision': 0.8523890784982935, 'recall': 0.881729920564872, 'f1-score': 0.8668112798264641, 'support': 1133.0} | {'precision': 0.9377168169931153, 'recall': 0.9583810614738449, 'f1-score': 0.9479363366603722, 'support': 18333.0} | {'precision': 0.9173474801061008, 'recall': 0.8761653830563437, 'f1-score': 0.8962836261856633, 'support': 9868.0} | 0.9278 | {'precision': 0.9024844585325033, 'recall': 0.9054254550316868, 'f1-score': 0.9036770808908332, 'support': 29334.0} | {'precision': 0.9275688336251569, 'recall': 0.9277630053862412, 'f1-score': 0.9274269060897973, 'support': 29334.0} |
101
+ | 0.003 | 30.0 | 2430 | 0.6004 | {'precision': 0.8579982891360137, 'recall': 0.8852603706972639, 'f1-score': 0.8714161598609904, 'support': 1133.0} | {'precision': 0.9349632216753982, 'recall': 0.9637266132111493, 'f1-score': 0.9491270480795058, 'support': 18333.0} | {'precision': 0.9265213638325421, 'recall': 0.870186461289015, 'f1-score': 0.8974707357859533, 'support': 9868.0} | 0.9292 | {'precision': 0.9064942915479847, 'recall': 0.9063911483991428, 'f1-score': 0.9060046479088165, 'support': 29334.0} | {'precision': 0.9291506655371141, 'recall': 0.9292288811617918, 'f1-score': 0.9287482751176065, 'support': 29334.0} |
102
+ | 0.0018 | 31.0 | 2511 | 0.6522 | {'precision': 0.8560477001703578, 'recall': 0.8870255957634599, 'f1-score': 0.8712613784135241, 'support': 1133.0} | {'precision': 0.9333439052753991, 'recall': 0.96312660230186, 'f1-score': 0.9480013959356794, 'support': 18333.0} | {'precision': 0.9252326336290846, 'recall': 0.8665383056343737, 'f1-score': 0.8949241234955522, 'support': 9868.0} | 0.9277 | {'precision': 0.9048747463582805, 'recall': 0.9055635012332311, 'f1-score': 0.9047289659482519, 'support': 29334.0} | {'precision': 0.9276297636994175, 'recall': 0.9276948251176109, 'f1-score': 0.927182108954982, 'support': 29334.0} |
103
+ | 0.0018 | 32.0 | 2592 | 0.6375 | {'precision': 0.8494533221194281, 'recall': 0.8914386584289496, 'f1-score': 0.8699397071490095, 'support': 1133.0} | {'precision': 0.9368443474093402, 'recall': 0.9596356297387225, 'f1-score': 0.9481030394481569, 'support': 18333.0} | {'precision': 0.9201366645312834, 'recall': 0.8733279286582895, 'f1-score': 0.896121451596132, 'support': 9868.0} | 0.9280 | {'precision': 0.9021447780200171, 'recall': 0.9081340722753205, 'f1-score': 0.9047213993977662, 'support': 29334.0} | {'precision': 0.9278484571013653, 'recall': 0.927967546192132, 'f1-score': 0.9275973680627775, 'support': 29334.0} |
104
+ | 0.0018 | 33.0 | 2673 | 0.6827 | {'precision': 0.851602023608769, 'recall': 0.8914386584289496, 'f1-score': 0.8710651142733937, 'support': 1133.0} | {'precision': 0.9285340314136126, 'recall': 0.9673812251131839, 'f1-score': 0.9475596398899366, 'support': 18333.0} | {'precision': 0.9329133510167993, 'recall': 0.8553911633563032, 'f1-score': 0.8924719813914147, 'support': 9868.0} | 0.9268 | {'precision': 0.9043498020130603, 'recall': 0.9047370156328123, 'f1-score': 0.9036989118515817, 'support': 29334.0} | {'precision': 0.927035809589155, 'recall': 0.9267743914911025, 'f1-score': 0.926073538042696, 'support': 29334.0} |
105
+ | 0.0018 | 34.0 | 2754 | 0.6228 | {'precision': 0.8595744680851064, 'recall': 0.8914386584289496, 'f1-score': 0.8752166377816292, 'support': 1133.0} | {'precision': 0.9350964071225372, 'recall': 0.9681994218076693, 'f1-score': 0.9513600428781992, 'support': 18333.0} | {'precision': 0.93461915658712, 'recall': 0.8691730847182814, 'f1-score': 0.9007088474665266, 'support': 9868.0} | 0.9319 | {'precision': 0.909763343931588, 'recall': 0.9096037216516334, 'f1-score': 0.9090951760421183, 'support': 29334.0} | {'precision': 0.9320188907520146, 'recall': 0.931922001772687, 'f1-score': 0.9313799353477976, 'support': 29334.0} |
106
+ | 0.0018 | 35.0 | 2835 | 0.6088 | {'precision': 0.8614200171086399, 'recall': 0.8887908208296558, 'f1-score': 0.8748913987836664, 'support': 1133.0} | {'precision': 0.9379079764368731, 'recall': 0.9639993454426444, 'f1-score': 0.9507746933505488, 'support': 18333.0} | {'precision': 0.9270542801973826, 'recall': 0.8757600324280502, 'f1-score': 0.9006774361646691, 'support': 9868.0} | 0.9314 | {'precision': 0.9087940912476319, 'recall': 0.9095167329001167, 'f1-score': 0.908781176099628, 'support': 29334.0} | {'precision': 0.9313024970474211, 'recall': 0.9314106497579601, 'f1-score': 0.9309909779808571, 'support': 29334.0} |
107
+ | 0.0018 | 36.0 | 2916 | 0.6024 | {'precision': 0.8583617747440273, 'recall': 0.8879082082965578, 'f1-score': 0.8728850325379609, 'support': 1133.0} | {'precision': 0.9392336059002726, 'recall': 0.9585992472590411, 'f1-score': 0.9488176222870102, 'support': 18333.0} | {'precision': 0.9182097132578563, 'recall': 0.8794081880826915, 'f1-score': 0.8983901858274238, 'support': 9868.0} | 0.9292 | {'precision': 0.9052683646340521, 'recall': 0.9086385478794301, 'f1-score': 0.9066976135507984, 'support': 29334.0} | {'precision': 0.9290375345395514, 'recall': 0.9292288811617918, 'f1-score': 0.9289209301492564, 'support': 29334.0} |
108
+ | 0.0018 | 37.0 | 2997 | 0.6063 | {'precision': 0.8619499568593615, 'recall': 0.881729920564872, 'f1-score': 0.8717277486910995, 'support': 1133.0} | {'precision': 0.9392710390095522, 'recall': 0.9600720013091147, 'f1-score': 0.9495576176089771, 'support': 18333.0} | {'precision': 0.9199872827469266, 'recall': 0.8797122010539117, 'f1-score': 0.8993990882718607, 'support': 9868.0} | 0.9300 | {'precision': 0.9070694262052802, 'recall': 0.9071713743092995, 'f1-score': 0.9068948181906458, 'support': 29334.0} | {'precision': 0.9297974966056608, 'recall': 0.9300129542510398, 'f1-score': 0.9296781054734817, 'support': 29334.0} |
109
+ | 0.0016 | 38.0 | 3078 | 0.6193 | {'precision': 0.8541315345699831, 'recall': 0.8940864960282436, 'f1-score': 0.873652436394998, 'support': 1133.0} | {'precision': 0.9372875955819882, 'recall': 0.9627993236240658, 'f1-score': 0.9498721915780978, 'support': 18333.0} | {'precision': 0.9259338772005152, 'recall': 0.8741386299148763, 'f1-score': 0.8992910758965804, 'support': 9868.0} | 0.9303 | {'precision': 0.9057843357841623, 'recall': 0.9103414831890619, 'f1-score': 0.9076052346232254, 'support': 29334.0} | {'precision': 0.9302563584470943, 'recall': 0.9303197654598759, 'f1-score': 0.9299127100151448, 'support': 29334.0} |
110
+ | 0.0016 | 39.0 | 3159 | 0.6373 | {'precision': 0.8519764507989908, 'recall': 0.8940864960282436, 'f1-score': 0.8725236864771748, 'support': 1133.0} | {'precision': 0.9361533167451956, 'recall': 0.9645448099056346, 'f1-score': 0.9501370157433776, 'support': 18333.0} | {'precision': 0.9292350907519447, 'recall': 0.8716051884880421, 'f1-score': 0.8994980129679984, 'support': 9868.0} | 0.9306 | {'precision': 0.9057882860987103, 'recall': 0.9100788314739735, 'f1-score': 0.9073862383961835, 'support': 29334.0} | {'precision': 0.9305747579663571, 'recall': 0.9305583964000819, 'f1-score': 0.9301042353027269, 'support': 29334.0} |
111
+ | 0.0016 | 40.0 | 3240 | 0.6333 | {'precision': 0.8584825234441603, 'recall': 0.8887908208296558, 'f1-score': 0.8733738074588032, 'support': 1133.0} | {'precision': 0.9395264505119454, 'recall': 0.9609992908961981, 'f1-score': 0.9501415666711609, 'support': 18333.0} | {'precision': 0.922414709320863, 'recall': 0.8795095257397649, 'f1-score': 0.9004513150386471, 'support': 9868.0} | 0.9308 | {'precision': 0.9068078944256562, 'recall': 0.909766545821873, 'f1-score': 0.907988896389537, 'support': 29334.0} | {'precision': 0.930639785500648, 'recall': 0.9307970273402877, 'f1-score': 0.9304606068873861, 'support': 29334.0} |
112
+ | 0.0016 | 41.0 | 3321 | 0.6439 | {'precision': 0.8614200171086399, 'recall': 0.8887908208296558, 'f1-score': 0.8748913987836664, 'support': 1133.0} | {'precision': 0.9370962617812136, 'recall': 0.96536300660012, 'f1-score': 0.9510196405061931, 'support': 18333.0} | {'precision': 0.9296260372885009, 'recall': 0.8741386299148763, 'f1-score': 0.9010288818091607, 'support': 9868.0} | 0.9317 | {'precision': 0.9093807720594516, 'recall': 0.909430819114884, 'f1-score': 0.9089799736996733, 'support': 29334.0} | {'precision': 0.931660338943956, 'recall': 0.9317174609667962, 'f1-score': 0.9312622905132177, 'support': 29334.0} |
113
+ | 0.0016 | 42.0 | 3402 | 0.6369 | {'precision': 0.8612068965517241, 'recall': 0.881729920564872, 'f1-score': 0.8713475795900567, 'support': 1133.0} | {'precision': 0.9372546939641455, 'recall': 0.9638902525500463, 'f1-score': 0.9503858875413451, 'support': 18333.0} | {'precision': 0.9261802575107296, 'recall': 0.8747466558573166, 'f1-score': 0.8997289972899729, 'support': 9868.0} | 0.9307 | {'precision': 0.9082139493421998, 'recall': 0.9067889429907449, 'f1-score': 0.907154154807125, 'support': 29334.0} | {'precision': 0.9305919581152813, 'recall': 0.9307288470716575, 'f1-score': 0.93029205117708, 'support': 29334.0} |
114
+ | 0.0016 | 43.0 | 3483 | 0.6516 | {'precision': 0.8535139712108383, 'recall': 0.8896734333627537, 'f1-score': 0.8712186689714779, 'support': 1133.0} | {'precision': 0.9362006788290199, 'recall': 0.9629084165166639, 'f1-score': 0.949366748232004, 'support': 18333.0} | {'precision': 0.92567494890825, 'recall': 0.872111876773409, 'f1-score': 0.898095486564049, 'support': 9868.0} | 0.9295 | {'precision': 0.905129866316036, 'recall': 0.9082312422176089, 'f1-score': 0.9062269679225103, 'support': 29334.0} | {'precision': 0.9294661065719273, 'recall': 0.9295356923706279, 'f1-score': 0.929100620736894, 'support': 29334.0} |
115
+ | 0.0014 | 44.0 | 3564 | 0.6528 | {'precision': 0.8609442060085837, 'recall': 0.8852603706972639, 'f1-score': 0.8729329852045257, 'support': 1133.0} | {'precision': 0.9381273567369484, 'recall': 0.9635084274259532, 'f1-score': 0.9506485119207794, 'support': 18333.0} | {'precision': 0.9262312633832976, 'recall': 0.8766720713417105, 'f1-score': 0.9007705122865473, 'support': 9868.0} | 0.9313 | {'precision': 0.9084342753762765, 'recall': 0.9084802898216425, 'f1-score': 0.9081173364706174, 'support': 29334.0} | {'precision': 0.931144362294013, 'recall': 0.9312742892206995, 'f1-score': 0.9308677867499838, 'support': 29334.0} |
116
+ | 0.0014 | 45.0 | 3645 | 0.6566 | {'precision': 0.8540084388185654, 'recall': 0.8932038834951457, 'f1-score': 0.8731665228645384, 'support': 1133.0} | {'precision': 0.9349078036667196, 'recall': 0.9651993672612229, 'f1-score': 0.9498121309715513, 'support': 18333.0} | {'precision': 0.9299501192799826, 'recall': 0.8690717470612079, 'f1-score': 0.8984808800419066, 'support': 9868.0} | 0.9301 | {'precision': 0.9062887872550892, 'recall': 0.9091583326058589, 'f1-score': 0.9071531779593321, 'support': 29334.0} | {'precision': 0.9301153645209747, 'recall': 0.93008113451967, 'f1-score': 0.9295838546315028, 'support': 29334.0} |
117
+ | 0.0014 | 46.0 | 3726 | 0.6471 | {'precision': 0.8521959459459459, 'recall': 0.8905560458958517, 'f1-score': 0.870953819594303, 'support': 1133.0} | {'precision': 0.9352380952380952, 'recall': 0.9641629847815415, 'f1-score': 0.9494802997341067, 'support': 18333.0} | {'precision': 0.9281081081081081, 'recall': 0.8699837859748683, 'f1-score': 0.8981064964954492, 'support': 9868.0} | 0.9296 | {'precision': 0.9051807164307165, 'recall': 0.9082342722174205, 'f1-score': 0.9061802052746196, 'support': 29334.0} | {'precision': 0.9296321271414592, 'recall': 0.9296379627735734, 'f1-score': 0.9291650617046028, 'support': 29334.0} |
118
+ | 0.0014 | 47.0 | 3807 | 0.6518 | {'precision': 0.8537616229923922, 'recall': 0.8914386584289496, 'f1-score': 0.8721934369602763, 'support': 1133.0} | {'precision': 0.936179227795138, 'recall': 0.9641629847815415, 'f1-score': 0.9499650669103026, 'support': 18333.0} | {'precision': 0.9281553398058252, 'recall': 0.8719092014592622, 'f1-score': 0.8991535165639043, 'support': 9868.0} | 0.9303 | {'precision': 0.9060320635311184, 'recall': 0.9091702815565844, 'f1-score': 0.9071040068114944, 'support': 29334.0} | {'precision': 0.9302966726400262, 'recall': 0.9303197654598759, 'f1-score': 0.929868126992404, 'support': 29334.0} |
119
+ | 0.0014 | 48.0 | 3888 | 0.6532 | {'precision': 0.8524451939291737, 'recall': 0.8923212709620476, 'f1-score': 0.871927554980595, 'support': 1133.0} | {'precision': 0.9361364117771659, 'recall': 0.9642720776741396, 'f1-score': 0.9499959695837924, 'support': 18333.0} | {'precision': 0.9285405872193437, 'recall': 0.8717065261451156, 'f1-score': 0.8992264269287059, 'support': 9868.0} | 0.9304 | {'precision': 0.9057073976418945, 'recall': 0.9094332915937676, 'f1-score': 0.9070499838310311, 'support': 29334.0} | {'precision': 0.9303486655932715, 'recall': 0.930353855594191, 'f1-score': 0.929901698067265, 'support': 29334.0} |
120
+ | 0.0014 | 49.0 | 3969 | 0.6541 | {'precision': 0.8511354079058032, 'recall': 0.8932038834951457, 'f1-score': 0.8716623600344531, 'support': 1133.0} | {'precision': 0.9361330297092623, 'recall': 0.9642175312278405, 'f1-score': 0.9499677558039552, 'support': 18333.0} | {'precision': 0.9287410926365796, 'recall': 0.8717065261451156, 'f1-score': 0.8993204391008887, 'support': 9868.0} | 0.9304 | {'precision': 0.9053365100838816, 'recall': 0.9097093136227006, 'f1-score': 0.906983518313099, 'support': 29334.0} | {'precision': 0.9303634128640809, 'recall': 0.930353855594191, 'f1-score': 0.9299054480848339, 'support': 29334.0} |
121
+ | 0.0013 | 50.0 | 4050 | 0.6554 | {'precision': 0.8511354079058032, 'recall': 0.8932038834951457, 'f1-score': 0.8716623600344531, 'support': 1133.0} | {'precision': 0.9360508205399682, 'recall': 0.9644902634593356, 'f1-score': 0.9500577599871047, 'support': 18333.0} | {'precision': 0.9292274446245273, 'recall': 0.8715038508309688, 'f1-score': 0.8994404643622863, 'support': 9868.0} | 0.9305 | {'precision': 0.9054712243567663, 'recall': 0.9097326659284835, 'f1-score': 0.907053528127948, 'support': 29334.0} | {'precision': 0.9304756437468926, 'recall': 0.9304561259971365, 'f1-score': 0.9300020750695325, 'support': 29334.0} |
122
 
123
 
124
  ### Framework versions
125
 
126
+ - Transformers 4.38.2
127
+ - Pytorch 2.2.1+cu121
128
+ - Datasets 2.18.0
129
  - Tokenizers 0.15.2
meta_data/README_s42_e50.md ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: allenai/longformer-base-4096
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - essays_su_g
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: longformer-spans
12
+ results:
13
+ - task:
14
+ name: Token Classification
15
+ type: token-classification
16
+ dataset:
17
+ name: essays_su_g
18
+ type: essays_su_g
19
+ config: spans
20
+ split: train[0%:20%]
21
+ args: spans
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9304561259971365
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # longformer-spans
32
+
33
+ This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.6554
36
+ - B: {'precision': 0.8511354079058032, 'recall': 0.8932038834951457, 'f1-score': 0.8716623600344531, 'support': 1133.0}
37
+ - I: {'precision': 0.9360508205399682, 'recall': 0.9644902634593356, 'f1-score': 0.9500577599871047, 'support': 18333.0}
38
+ - O: {'precision': 0.9292274446245273, 'recall': 0.8715038508309688, 'f1-score': 0.8994404643622863, 'support': 9868.0}
39
+ - Accuracy: 0.9305
40
+ - Macro avg: {'precision': 0.9054712243567663, 'recall': 0.9097326659284835, 'f1-score': 0.907053528127948, 'support': 29334.0}
41
+ - Weighted avg: {'precision': 0.9304756437468926, 'recall': 0.9304561259971365, 'f1-score': 0.9300020750695325, 'support': 29334.0}
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 2e-05
61
+ - train_batch_size: 8
62
+ - eval_batch_size: 8
63
+ - seed: 42
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - num_epochs: 50
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg |
71
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
72
+ | No log | 1.0 | 81 | 0.2531 | {'precision': 0.7474747474747475, 'recall': 0.9143865842894969, 'f1-score': 0.8225486304088924, 'support': 1133.0} | {'precision': 0.9081643158653351, 'recall': 0.9623084056073746, 'f1-score': 0.9344527132604147, 'support': 18333.0} | {'precision': 0.9300633654071814, 'recall': 0.8032022699635184, 'f1-score': 0.8619902120717781, 'support': 9868.0} | 0.9069 | {'precision': 0.8619008095824213, 'recall': 0.89329908662013, 'f1-score': 0.8729971852470283, 'support': 29334.0} | {'precision': 0.9093246942621582, 'recall': 0.9069339333196973, 'f1-score': 0.9057540261532953, 'support': 29334.0} |
73
+ | No log | 2.0 | 162 | 0.2078 | {'precision': 0.8297520661157025, 'recall': 0.8861429832303619, 'f1-score': 0.8570209133589416, 'support': 1133.0} | {'precision': 0.9325182597650048, 'recall': 0.9610538373424972, 'f1-score': 0.9465710371504554, 'support': 18333.0} | {'precision': 0.9238353196099675, 'recall': 0.8641062018646128, 'f1-score': 0.8929730861870352, 'support': 9868.0} | 0.9255 | {'precision': 0.8953685484968915, 'recall': 0.9037676741458239, 'f1-score': 0.898855012232144, 'support': 29334.0} | {'precision': 0.9256280521269545, 'recall': 0.9255471466557578, 'f1-score': 0.9250818140522481, 'support': 29334.0} |
74
+ | No log | 3.0 | 243 | 0.2431 | {'precision': 0.8289473684210527, 'recall': 0.8896734333627537, 'f1-score': 0.8582375478927203, 'support': 1133.0} | {'precision': 0.92943782301445, 'recall': 0.9613265695739922, 'f1-score': 0.9451132859632658, 'support': 18333.0} | {'precision': 0.923219746614242, 'recall': 0.8566072152411837, 'f1-score': 0.8886669470142977, 'support': 9868.0} | 0.9233 | {'precision': 0.8938683126832482, 'recall': 0.9025357393926431, 'f1-score': 0.8973392602900946, 'support': 29334.0} | {'precision': 0.9234646975296347, 'recall': 0.9233312879252744, 'f1-score': 0.9227691568304388, 'support': 29334.0} |
75
+ | No log | 4.0 | 324 | 0.2805 | {'precision': 0.8503869303525365, 'recall': 0.8729037952338923, 'f1-score': 0.8614982578397212, 'support': 1133.0} | {'precision': 0.9574755315558555, 'recall': 0.9284896089019801, 'f1-score': 0.942759823876381, 'support': 18333.0} | {'precision': 0.8724141248917541, 'recall': 0.9188285366842318, 'f1-score': 0.8950199891417008, 'support': 9868.0} | 0.9231 | {'precision': 0.8934255289333821, 'recall': 0.9067406469400346, 'f1-score': 0.8997593569526009, 'support': 29334.0} | {'precision': 0.9247245481875896, 'recall': 0.9230926569850685, 'f1-score': 0.9235614178123817, 'support': 29334.0} |
76
+ | No log | 5.0 | 405 | 0.2743 | {'precision': 0.8405063291139241, 'recall': 0.8790820829655781, 'f1-score': 0.8593615185504745, 'support': 1133.0} | {'precision': 0.9325283338629382, 'recall': 0.9604538264332079, 'f1-score': 0.9462851000940481, 'support': 18333.0} | {'precision': 0.921333764972483, 'recall': 0.8652209160924199, 'f1-score': 0.8923961327410503, 'support': 9868.0} | 0.9253 | {'precision': 0.8981228093164484, 'recall': 0.9015856084970686, 'f1-score': 0.899347583795191, 'support': 29334.0} | {'precision': 0.92520819555273, 'recall': 0.9252744255812367, 'f1-score': 0.9247994265504382, 'support': 29334.0} |
77
+ | No log | 6.0 | 486 | 0.2924 | {'precision': 0.8355481727574751, 'recall': 0.8879082082965578, 'f1-score': 0.8609328198545143, 'support': 1133.0} | {'precision': 0.9304343225942971, 'recall': 0.9593628975072274, 'f1-score': 0.9446771941132237, 'support': 18333.0} | {'precision': 0.9198005852389726, 'recall': 0.8600526955816782, 'f1-score': 0.8889238020424195, 'support': 9868.0} | 0.9232 | {'precision': 0.8952610268635816, 'recall': 0.9024412671284878, 'f1-score': 0.8981779386700525, 'support': 29334.0} | {'precision': 0.923192223733335, 'recall': 0.9231949273880139, 'f1-score': 0.9226871194902669, 'support': 29334.0} |
78
+ | 0.1596 | 7.0 | 567 | 0.3490 | {'precision': 0.8356729975227085, 'recall': 0.8932038834951457, 'f1-score': 0.863481228668942, 'support': 1133.0} | {'precision': 0.93515484621076, 'recall': 0.9651993672612229, 'f1-score': 0.949939605422091, 'support': 18333.0} | {'precision': 0.930659710900989, 'recall': 0.8677543575192541, 'f1-score': 0.8981068750327758, 'support': 9868.0} | 0.9296 | {'precision': 0.9004958515448193, 'recall': 0.9087192027585408, 'f1-score': 0.9038425697079363, 'support': 29334.0} | {'precision': 0.9298002771168626, 'recall': 0.9296379627735734, 'f1-score': 0.9291636210918572, 'support': 29334.0} |
79
+ | 0.1596 | 8.0 | 648 | 0.3490 | {'precision': 0.8596491228070176, 'recall': 0.8649602824360106, 'f1-score': 0.8622965244170699, 'support': 1133.0} | {'precision': 0.9429824561403509, 'recall': 0.9499263622974963, 'f1-score': 0.946441672780631, 'support': 18333.0} | {'precision': 0.9021180341353074, 'recall': 0.8891366031617349, 'f1-score': 0.8955802796774524, 'support': 9868.0} | 0.9262 | {'precision': 0.9015832043608919, 'recall': 0.9013410826317473, 'f1-score': 0.9014394922917178, 'support': 29334.0} | {'precision': 0.9260169286632788, 'recall': 0.9261948592077452, 'f1-score': 0.926081794133393, 'support': 29334.0} |
80
+ | 0.1596 | 9.0 | 729 | 0.4179 | {'precision': 0.8520408163265306, 'recall': 0.884377758164166, 'f1-score': 0.8679081853616285, 'support': 1133.0} | {'precision': 0.9287558623596985, 'recall': 0.9613811160202913, 'f1-score': 0.9447869203966764, 'support': 18333.0} | {'precision': 0.9209236466615837, 'recall': 0.8568098905553304, 'f1-score': 0.887710640978529, 'support': 9868.0} | 0.9232 | {'precision': 0.9005734417826042, 'recall': 0.9008562549132626, 'f1-score': 0.900135248912278, 'support': 29334.0} | {'precision': 0.9231580423670424, 'recall': 0.923229017522329, 'f1-score': 0.9226170038461553, 'support': 29334.0} |
81
+ | 0.1596 | 10.0 | 810 | 0.5158 | {'precision': 0.822257806244996, 'recall': 0.9064430714916152, 'f1-score': 0.8623005877413936, 'support': 1133.0} | {'precision': 0.9124053998772755, 'recall': 0.9732722413134784, 'f1-score': 0.9418564754942067, 'support': 18333.0} | {'precision': 0.9440731621526557, 'recall': 0.8159708147547629, 'f1-score': 0.8753601130619123, 'support': 9868.0} | 0.9178 | {'precision': 0.8929121227583091, 'recall': 0.8985620425199521, 'f1-score': 0.8931723920991709, 'support': 29334.0} | {'precision': 0.9195766092093843, 'recall': 0.9177745960319084, 'f1-score': 0.9164142267280712, 'support': 29334.0} |
82
+ | 0.1596 | 11.0 | 891 | 0.4279 | {'precision': 0.8556611927398444, 'recall': 0.8737864077669902, 'f1-score': 0.8646288209606986, 'support': 1133.0} | {'precision': 0.9373558594797533, 'recall': 0.9533082419680358, 'f1-score': 0.9452647520147115, 'support': 18333.0} | {'precision': 0.9077843054972723, 'recall': 0.8768747466558573, 'f1-score': 0.8920618556701031, 'support': 9868.0} | 0.9245 | {'precision': 0.9002671192389567, 'recall': 0.9013231321302945, 'f1-score': 0.9006518095485044, 'support': 29334.0} | {'precision': 0.9242525611871427, 'recall': 0.924524442626304, 'f1-score': 0.9242527287307136, 'support': 29334.0} |
83
+ | 0.1596 | 12.0 | 972 | 0.4510 | {'precision': 0.842237061769616, 'recall': 0.8905560458958517, 'f1-score': 0.8657228657228657, 'support': 1133.0} | {'precision': 0.9381618860092598, 'recall': 0.9615993018054874, 'f1-score': 0.9497360198254499, 'support': 18333.0} | {'precision': 0.9247726056714821, 'recall': 0.8757600324280502, 'f1-score': 0.8995992296882319, 'support': 9868.0} | 0.9300 | {'precision': 0.9017238511501193, 'recall': 0.9093051267097964, 'f1-score': 0.9050193717455158, 'support': 29334.0} | {'precision': 0.9299527006190401, 'recall': 0.9299788641167246, 'f1-score': 0.9296249968257807, 'support': 29334.0} |
84
+ | 0.0211 | 13.0 | 1053 | 0.4814 | {'precision': 0.856898029134533, 'recall': 0.8826125330979699, 'f1-score': 0.8695652173913043, 'support': 1133.0} | {'precision': 0.9383210509452099, 'recall': 0.958435607920144, 'f1-score': 0.9482716748967862, 'support': 18333.0} | {'precision': 0.9175934752674505, 'recall': 0.877888123226591, 'f1-score': 0.8973017763737118, 'support': 9868.0} | 0.9284 | {'precision': 0.9042708517823977, 'recall': 0.9063120880815684, 'f1-score': 0.9050462228872674, 'support': 29334.0} | {'precision': 0.9282033717845217, 'recall': 0.9284107179382287, 'f1-score': 0.9280853595296557, 'support': 29334.0} |
85
+ | 0.0211 | 14.0 | 1134 | 0.4911 | {'precision': 0.8470688190314358, 'recall': 0.8799646954986761, 'f1-score': 0.8632034632034632, 'support': 1133.0} | {'precision': 0.9397603195739015, 'recall': 0.9624174984999727, 'f1-score': 0.9509539721892853, 'support': 18333.0} | {'precision': 0.925708804092944, 'recall': 0.8801175516822051, 'f1-score': 0.9023376623376623, 'support': 9868.0} | 0.9315 | {'precision': 0.9041793142327604, 'recall': 0.9074999152269513, 'f1-score': 0.905498365910137, 'support': 29334.0} | {'precision': 0.9314532416138313, 'recall': 0.9315470102952206, 'f1-score': 0.9312100889037889, 'support': 29334.0} |
86
+ | 0.0211 | 15.0 | 1215 | 0.4775 | {'precision': 0.8397009966777409, 'recall': 0.8923212709620476, 'f1-score': 0.865211810012837, 'support': 1133.0} | {'precision': 0.9259123897039628, 'recall': 0.9673266786668848, 'f1-score': 0.9461665688523716, 'support': 18333.0} | {'precision': 0.9330511306672608, 'recall': 0.8488042156465343, 'f1-score': 0.8889360573096311, 'support': 9868.0} | 0.9246 | {'precision': 0.8995548390163215, 'recall': 0.9028173884251555, 'f1-score': 0.9001048120582799, 'support': 29334.0} | {'precision': 0.9249840331050372, 'recall': 0.9245585327606191, 'f1-score': 0.9237873355507777, 'support': 29334.0} |
87
+ | 0.0211 | 16.0 | 1296 | 0.5006 | {'precision': 0.8545611015490534, 'recall': 0.8764342453662842, 'f1-score': 0.865359477124183, 'support': 1133.0} | {'precision': 0.9472161572052402, 'recall': 0.9465444826269569, 'f1-score': 0.9468802008021172, 'support': 18333.0} | {'precision': 0.8979902557856273, 'recall': 0.8965342521280908, 'f1-score': 0.897261663286004, 'support': 9868.0} | 0.9270 | {'precision': 0.8999225048466403, 'recall': 0.9065043267071107, 'f1-score': 0.9031671137374347, 'support': 29334.0} | {'precision': 0.9270777726253262, 'recall': 0.9270130224313083, 'f1-score': 0.9270397866705257, 'support': 29334.0} |
88
+ | 0.0211 | 17.0 | 1377 | 0.5324 | {'precision': 0.8460891505466779, 'recall': 0.8879082082965578, 'f1-score': 0.8664944013781224, 'support': 1133.0} | {'precision': 0.9300636741567121, 'recall': 0.9640538918889434, 'f1-score': 0.9467538032997642, 'support': 18333.0} | {'precision': 0.9267118792386786, 'recall': 0.8585326307255776, 'f1-score': 0.8913203577064702, 'support': 9868.0} | 0.9256 | {'precision': 0.9009549013140229, 'recall': 0.9034982436370264, 'f1-score': 0.901522854128119, 'support': 29334.0} | {'precision': 0.9256926832416877, 'recall': 0.9256153269243881, 'f1-score': 0.9250059631316369, 'support': 29334.0} |
89
+ | 0.0211 | 18.0 | 1458 | 0.5886 | {'precision': 0.8499142367066895, 'recall': 0.8746690203000883, 'f1-score': 0.8621139625924314, 'support': 1133.0} | {'precision': 0.9357597135374913, 'recall': 0.9550537282496045, 'f1-score': 0.945308282042976, 'support': 18333.0} | {'precision': 0.910013746431215, 'recall': 0.872111876773409, 'f1-score': 0.8906597671410089, 'support': 9868.0} | 0.9240 | {'precision': 0.8985625655584654, 'recall': 0.9006115417743672, 'f1-score': 0.8993606705921388, 'support': 29334.0} | {'precision': 0.9237830268035296, 'recall': 0.9240471807458921, 'f1-score': 0.9237111350807452, 'support': 29334.0} |
90
+ | 0.0054 | 19.0 | 1539 | 0.5662 | {'precision': 0.8524871355060034, 'recall': 0.8773168578993822, 'f1-score': 0.8647237929534581, 'support': 1133.0} | {'precision': 0.9394004397490213, 'recall': 0.9554900998199968, 'f1-score': 0.9473769605191995, 'support': 18333.0} | {'precision': 0.9122991282428317, 'recall': 0.8802188893392785, 'f1-score': 0.8959719428541957, 'support': 9868.0} | 0.9271 | {'precision': 0.9013955678326188, 'recall': 0.9043419490195524, 'f1-score': 0.9026908987756178, 'support': 29334.0} | {'precision': 0.9269265693034491, 'recall': 0.9271493829685689, 'f1-score': 0.9268918322322205, 'support': 29334.0} |
91
+ | 0.0054 | 20.0 | 1620 | 0.5481 | {'precision': 0.8527397260273972, 'recall': 0.8790820829655781, 'f1-score': 0.8657105606258149, 'support': 1133.0} | {'precision': 0.9360140418062869, 'recall': 0.9599083619702177, 'f1-score': 0.9478106317660365, 'support': 18333.0} | {'precision': 0.9194874532835025, 'recall': 0.8726185650587759, 'f1-score': 0.8954401289450424, 'support': 9868.0} | 0.9274 | {'precision': 0.9027470737057288, 'recall': 0.9038696699981905, 'f1-score': 0.902987107112298, 'support': 29334.0} | {'precision': 0.9272380761923127, 'recall': 0.9274221040430899, 'f1-score': 0.9270220757409653, 'support': 29334.0} |
92
+ | 0.0054 | 21.0 | 1701 | 0.5435 | {'precision': 0.851027397260274, 'recall': 0.8773168578993822, 'f1-score': 0.8639721860060844, 'support': 1133.0} | {'precision': 0.9310981074384522, 'recall': 0.9633993345333551, 'f1-score': 0.9469733526352474, 'support': 18333.0} | {'precision': 0.9250842666086767, 'recall': 0.8621807863802189, 'f1-score': 0.8925255704169944, 'support': 9868.0} | 0.9260 | {'precision': 0.9024032571024675, 'recall': 0.9009656596043186, 'f1-score': 0.9011570363527754, 'support': 29334.0} | {'precision': 0.925982381797895, 'recall': 0.9260244085361696, 'f1-score': 0.9254511927961336, 'support': 29334.0} |
93
+ | 0.0054 | 22.0 | 1782 | 0.5495 | {'precision': 0.8664323374340949, 'recall': 0.8702559576345984, 'f1-score': 0.8683399383531484, 'support': 1133.0} | {'precision': 0.954357075758413, 'recall': 0.9420716740304369, 'f1-score': 0.9481745813889652, 'support': 18333.0} | {'precision': 0.8916724428161205, 'recall': 0.912545601945683, 'f1-score': 0.9019882806630942, 'support': 9868.0} | 0.9294 | {'precision': 0.9041539520028761, 'recall': 0.9082910778702393, 'f1-score': 0.9061676001350693, 'support': 29334.0} | {'precision': 0.9298738587952988, 'recall': 0.9293652416990523, 'f1-score': 0.9295539000593656, 'support': 29334.0} |
94
+ | 0.0054 | 23.0 | 1863 | 0.5612 | {'precision': 0.8410981697171381, 'recall': 0.8923212709620476, 'f1-score': 0.8659528907922912, 'support': 1133.0} | {'precision': 0.9308765464595946, 'recall': 0.9644902634593356, 'f1-score': 0.9473853407629661, 'support': 18333.0} | {'precision': 0.9287512312575243, 'recall': 0.8599513579246048, 'f1-score': 0.893028150486714, 'support': 9868.0} | 0.9265 | {'precision': 0.9002419824780857, 'recall': 0.905587630781996, 'f1-score': 0.9021221273473238, 'support': 29334.0} | {'precision': 0.9266939763613048, 'recall': 0.9265357605508966, 'f1-score': 0.9259542464879668, 'support': 29334.0} |
95
+ | 0.0054 | 24.0 | 1944 | 0.5436 | {'precision': 0.8559102674719585, 'recall': 0.8755516328331863, 'f1-score': 0.8656195462478184, 'support': 1133.0} | {'precision': 0.9425299715069082, 'recall': 0.9563082965144821, 'f1-score': 0.9493691449612822, 'support': 18333.0} | {'precision': 0.9138291205347817, 'recall': 0.8866031617349007, 'f1-score': 0.9000102870075095, 'support': 9868.0} | 0.9297 | {'precision': 0.9040897865045494, 'recall': 0.9061543636941897, 'f1-score': 0.9049996594055368, 'support': 29334.0} | {'precision': 0.9295293537232939, 'recall': 0.9297402331765187, 'f1-score': 0.9295299990681146, 'support': 29334.0} |
96
+ | 0.003 | 25.0 | 2025 | 0.5901 | {'precision': 0.8486897717666948, 'recall': 0.8861429832303619, 'f1-score': 0.8670120898100172, 'support': 1133.0} | {'precision': 0.9339209373515596, 'recall': 0.9651993672612229, 'f1-score': 0.9493025751072961, 'support': 18333.0} | {'precision': 0.9293785310734464, 'recall': 0.8668423186055938, 'f1-score': 0.8970218120805369, 'support': 9868.0} | 0.9291 | {'precision': 0.9039964133972336, 'recall': 0.9060615563657262, 'f1-score': 0.9044454923326167, 'support': 29334.0} | {'precision': 0.9291008863608976, 'recall': 0.9290584304902161, 'f1-score': 0.9285368530990505, 'support': 29334.0} |
97
+ | 0.003 | 26.0 | 2106 | 0.5823 | {'precision': 0.8599487617421008, 'recall': 0.8887908208296558, 'f1-score': 0.8741319444444444, 'support': 1133.0} | {'precision': 0.9412236174191825, 'recall': 0.960835651557301, 'f1-score': 0.9509285251565537, 'support': 18333.0} | {'precision': 0.9222057578323455, 'recall': 0.8829550060802595, 'f1-score': 0.9021536550010354, 'support': 9868.0} | 0.9319 | {'precision': 0.9077927123312096, 'recall': 0.9108604928224054, 'f1-score': 0.9090713748673446, 'support': 29334.0} | {'precision': 0.931686812009588, 'recall': 0.9318538215040567, 'f1-score': 0.9315543878196246, 'support': 29334.0} |
98
+ | 0.003 | 27.0 | 2187 | 0.5752 | {'precision': 0.8514767932489451, 'recall': 0.8905560458958517, 'f1-score': 0.8705780845556514, 'support': 1133.0} | {'precision': 0.9362391165852623, 'recall': 0.9619265804832815, 'f1-score': 0.9489090371008098, 'support': 18333.0} | {'precision': 0.9241919896918286, 'recall': 0.8722132144304824, 'f1-score': 0.8974506021583858, 'support': 9868.0} | 0.9290 | {'precision': 0.903969299842012, 'recall': 0.9082319469365384, 'f1-score': 0.9056459079382823, 'support': 29334.0} | {'precision': 0.9289125753524113, 'recall': 0.9289902502215859, 'f1-score': 0.9285728809255351, 'support': 29334.0} |
99
+ | 0.003 | 28.0 | 2268 | 0.5861 | {'precision': 0.8589965397923875, 'recall': 0.8764342453662842, 'f1-score': 0.8676277850589778, 'support': 1133.0} | {'precision': 0.941451361658699, 'recall': 0.956035564282987, 'f1-score': 0.9486874154262517, 'support': 18333.0} | {'precision': 0.9131889969668445, 'recall': 0.8847790839075801, 'f1-score': 0.8987595861855989, 'support': 9868.0} | 0.9290 | {'precision': 0.9045456328059771, 'recall': 0.9057496311856171, 'f1-score': 0.9050249288902762, 'support': 29334.0} | {'precision': 0.9287591162113087, 'recall': 0.9289902502215859, 'f1-score': 0.928760764435835, 'support': 29334.0} |
100
+ | 0.003 | 29.0 | 2349 | 0.6105 | {'precision': 0.8523890784982935, 'recall': 0.881729920564872, 'f1-score': 0.8668112798264641, 'support': 1133.0} | {'precision': 0.9377168169931153, 'recall': 0.9583810614738449, 'f1-score': 0.9479363366603722, 'support': 18333.0} | {'precision': 0.9173474801061008, 'recall': 0.8761653830563437, 'f1-score': 0.8962836261856633, 'support': 9868.0} | 0.9278 | {'precision': 0.9024844585325033, 'recall': 0.9054254550316868, 'f1-score': 0.9036770808908332, 'support': 29334.0} | {'precision': 0.9275688336251569, 'recall': 0.9277630053862412, 'f1-score': 0.9274269060897973, 'support': 29334.0} |
101
+ | 0.003 | 30.0 | 2430 | 0.6004 | {'precision': 0.8579982891360137, 'recall': 0.8852603706972639, 'f1-score': 0.8714161598609904, 'support': 1133.0} | {'precision': 0.9349632216753982, 'recall': 0.9637266132111493, 'f1-score': 0.9491270480795058, 'support': 18333.0} | {'precision': 0.9265213638325421, 'recall': 0.870186461289015, 'f1-score': 0.8974707357859533, 'support': 9868.0} | 0.9292 | {'precision': 0.9064942915479847, 'recall': 0.9063911483991428, 'f1-score': 0.9060046479088165, 'support': 29334.0} | {'precision': 0.9291506655371141, 'recall': 0.9292288811617918, 'f1-score': 0.9287482751176065, 'support': 29334.0} |
102
+ | 0.0018 | 31.0 | 2511 | 0.6522 | {'precision': 0.8560477001703578, 'recall': 0.8870255957634599, 'f1-score': 0.8712613784135241, 'support': 1133.0} | {'precision': 0.9333439052753991, 'recall': 0.96312660230186, 'f1-score': 0.9480013959356794, 'support': 18333.0} | {'precision': 0.9252326336290846, 'recall': 0.8665383056343737, 'f1-score': 0.8949241234955522, 'support': 9868.0} | 0.9277 | {'precision': 0.9048747463582805, 'recall': 0.9055635012332311, 'f1-score': 0.9047289659482519, 'support': 29334.0} | {'precision': 0.9276297636994175, 'recall': 0.9276948251176109, 'f1-score': 0.927182108954982, 'support': 29334.0} |
103
+ | 0.0018 | 32.0 | 2592 | 0.6375 | {'precision': 0.8494533221194281, 'recall': 0.8914386584289496, 'f1-score': 0.8699397071490095, 'support': 1133.0} | {'precision': 0.9368443474093402, 'recall': 0.9596356297387225, 'f1-score': 0.9481030394481569, 'support': 18333.0} | {'precision': 0.9201366645312834, 'recall': 0.8733279286582895, 'f1-score': 0.896121451596132, 'support': 9868.0} | 0.9280 | {'precision': 0.9021447780200171, 'recall': 0.9081340722753205, 'f1-score': 0.9047213993977662, 'support': 29334.0} | {'precision': 0.9278484571013653, 'recall': 0.927967546192132, 'f1-score': 0.9275973680627775, 'support': 29334.0} |
104
+ | 0.0018 | 33.0 | 2673 | 0.6827 | {'precision': 0.851602023608769, 'recall': 0.8914386584289496, 'f1-score': 0.8710651142733937, 'support': 1133.0} | {'precision': 0.9285340314136126, 'recall': 0.9673812251131839, 'f1-score': 0.9475596398899366, 'support': 18333.0} | {'precision': 0.9329133510167993, 'recall': 0.8553911633563032, 'f1-score': 0.8924719813914147, 'support': 9868.0} | 0.9268 | {'precision': 0.9043498020130603, 'recall': 0.9047370156328123, 'f1-score': 0.9036989118515817, 'support': 29334.0} | {'precision': 0.927035809589155, 'recall': 0.9267743914911025, 'f1-score': 0.926073538042696, 'support': 29334.0} |
105
+ | 0.0018 | 34.0 | 2754 | 0.6228 | {'precision': 0.8595744680851064, 'recall': 0.8914386584289496, 'f1-score': 0.8752166377816292, 'support': 1133.0} | {'precision': 0.9350964071225372, 'recall': 0.9681994218076693, 'f1-score': 0.9513600428781992, 'support': 18333.0} | {'precision': 0.93461915658712, 'recall': 0.8691730847182814, 'f1-score': 0.9007088474665266, 'support': 9868.0} | 0.9319 | {'precision': 0.909763343931588, 'recall': 0.9096037216516334, 'f1-score': 0.9090951760421183, 'support': 29334.0} | {'precision': 0.9320188907520146, 'recall': 0.931922001772687, 'f1-score': 0.9313799353477976, 'support': 29334.0} |
106
+ | 0.0018 | 35.0 | 2835 | 0.6088 | {'precision': 0.8614200171086399, 'recall': 0.8887908208296558, 'f1-score': 0.8748913987836664, 'support': 1133.0} | {'precision': 0.9379079764368731, 'recall': 0.9639993454426444, 'f1-score': 0.9507746933505488, 'support': 18333.0} | {'precision': 0.9270542801973826, 'recall': 0.8757600324280502, 'f1-score': 0.9006774361646691, 'support': 9868.0} | 0.9314 | {'precision': 0.9087940912476319, 'recall': 0.9095167329001167, 'f1-score': 0.908781176099628, 'support': 29334.0} | {'precision': 0.9313024970474211, 'recall': 0.9314106497579601, 'f1-score': 0.9309909779808571, 'support': 29334.0} |
107
+ | 0.0018 | 36.0 | 2916 | 0.6024 | {'precision': 0.8583617747440273, 'recall': 0.8879082082965578, 'f1-score': 0.8728850325379609, 'support': 1133.0} | {'precision': 0.9392336059002726, 'recall': 0.9585992472590411, 'f1-score': 0.9488176222870102, 'support': 18333.0} | {'precision': 0.9182097132578563, 'recall': 0.8794081880826915, 'f1-score': 0.8983901858274238, 'support': 9868.0} | 0.9292 | {'precision': 0.9052683646340521, 'recall': 0.9086385478794301, 'f1-score': 0.9066976135507984, 'support': 29334.0} | {'precision': 0.9290375345395514, 'recall': 0.9292288811617918, 'f1-score': 0.9289209301492564, 'support': 29334.0} |
108
+ | 0.0018 | 37.0 | 2997 | 0.6063 | {'precision': 0.8619499568593615, 'recall': 0.881729920564872, 'f1-score': 0.8717277486910995, 'support': 1133.0} | {'precision': 0.9392710390095522, 'recall': 0.9600720013091147, 'f1-score': 0.9495576176089771, 'support': 18333.0} | {'precision': 0.9199872827469266, 'recall': 0.8797122010539117, 'f1-score': 0.8993990882718607, 'support': 9868.0} | 0.9300 | {'precision': 0.9070694262052802, 'recall': 0.9071713743092995, 'f1-score': 0.9068948181906458, 'support': 29334.0} | {'precision': 0.9297974966056608, 'recall': 0.9300129542510398, 'f1-score': 0.9296781054734817, 'support': 29334.0} |
109
+ | 0.0016 | 38.0 | 3078 | 0.6193 | {'precision': 0.8541315345699831, 'recall': 0.8940864960282436, 'f1-score': 0.873652436394998, 'support': 1133.0} | {'precision': 0.9372875955819882, 'recall': 0.9627993236240658, 'f1-score': 0.9498721915780978, 'support': 18333.0} | {'precision': 0.9259338772005152, 'recall': 0.8741386299148763, 'f1-score': 0.8992910758965804, 'support': 9868.0} | 0.9303 | {'precision': 0.9057843357841623, 'recall': 0.9103414831890619, 'f1-score': 0.9076052346232254, 'support': 29334.0} | {'precision': 0.9302563584470943, 'recall': 0.9303197654598759, 'f1-score': 0.9299127100151448, 'support': 29334.0} |
110
+ | 0.0016 | 39.0 | 3159 | 0.6373 | {'precision': 0.8519764507989908, 'recall': 0.8940864960282436, 'f1-score': 0.8725236864771748, 'support': 1133.0} | {'precision': 0.9361533167451956, 'recall': 0.9645448099056346, 'f1-score': 0.9501370157433776, 'support': 18333.0} | {'precision': 0.9292350907519447, 'recall': 0.8716051884880421, 'f1-score': 0.8994980129679984, 'support': 9868.0} | 0.9306 | {'precision': 0.9057882860987103, 'recall': 0.9100788314739735, 'f1-score': 0.9073862383961835, 'support': 29334.0} | {'precision': 0.9305747579663571, 'recall': 0.9305583964000819, 'f1-score': 0.9301042353027269, 'support': 29334.0} |
111
+ | 0.0016 | 40.0 | 3240 | 0.6333 | {'precision': 0.8584825234441603, 'recall': 0.8887908208296558, 'f1-score': 0.8733738074588032, 'support': 1133.0} | {'precision': 0.9395264505119454, 'recall': 0.9609992908961981, 'f1-score': 0.9501415666711609, 'support': 18333.0} | {'precision': 0.922414709320863, 'recall': 0.8795095257397649, 'f1-score': 0.9004513150386471, 'support': 9868.0} | 0.9308 | {'precision': 0.9068078944256562, 'recall': 0.909766545821873, 'f1-score': 0.907988896389537, 'support': 29334.0} | {'precision': 0.930639785500648, 'recall': 0.9307970273402877, 'f1-score': 0.9304606068873861, 'support': 29334.0} |
112
+ | 0.0016 | 41.0 | 3321 | 0.6439 | {'precision': 0.8614200171086399, 'recall': 0.8887908208296558, 'f1-score': 0.8748913987836664, 'support': 1133.0} | {'precision': 0.9370962617812136, 'recall': 0.96536300660012, 'f1-score': 0.9510196405061931, 'support': 18333.0} | {'precision': 0.9296260372885009, 'recall': 0.8741386299148763, 'f1-score': 0.9010288818091607, 'support': 9868.0} | 0.9317 | {'precision': 0.9093807720594516, 'recall': 0.909430819114884, 'f1-score': 0.9089799736996733, 'support': 29334.0} | {'precision': 0.931660338943956, 'recall': 0.9317174609667962, 'f1-score': 0.9312622905132177, 'support': 29334.0} |
113
+ | 0.0016 | 42.0 | 3402 | 0.6369 | {'precision': 0.8612068965517241, 'recall': 0.881729920564872, 'f1-score': 0.8713475795900567, 'support': 1133.0} | {'precision': 0.9372546939641455, 'recall': 0.9638902525500463, 'f1-score': 0.9503858875413451, 'support': 18333.0} | {'precision': 0.9261802575107296, 'recall': 0.8747466558573166, 'f1-score': 0.8997289972899729, 'support': 9868.0} | 0.9307 | {'precision': 0.9082139493421998, 'recall': 0.9067889429907449, 'f1-score': 0.907154154807125, 'support': 29334.0} | {'precision': 0.9305919581152813, 'recall': 0.9307288470716575, 'f1-score': 0.93029205117708, 'support': 29334.0} |
114
+ | 0.0016 | 43.0 | 3483 | 0.6516 | {'precision': 0.8535139712108383, 'recall': 0.8896734333627537, 'f1-score': 0.8712186689714779, 'support': 1133.0} | {'precision': 0.9362006788290199, 'recall': 0.9629084165166639, 'f1-score': 0.949366748232004, 'support': 18333.0} | {'precision': 0.92567494890825, 'recall': 0.872111876773409, 'f1-score': 0.898095486564049, 'support': 9868.0} | 0.9295 | {'precision': 0.905129866316036, 'recall': 0.9082312422176089, 'f1-score': 0.9062269679225103, 'support': 29334.0} | {'precision': 0.9294661065719273, 'recall': 0.9295356923706279, 'f1-score': 0.929100620736894, 'support': 29334.0} |
115
+ | 0.0014 | 44.0 | 3564 | 0.6528 | {'precision': 0.8609442060085837, 'recall': 0.8852603706972639, 'f1-score': 0.8729329852045257, 'support': 1133.0} | {'precision': 0.9381273567369484, 'recall': 0.9635084274259532, 'f1-score': 0.9506485119207794, 'support': 18333.0} | {'precision': 0.9262312633832976, 'recall': 0.8766720713417105, 'f1-score': 0.9007705122865473, 'support': 9868.0} | 0.9313 | {'precision': 0.9084342753762765, 'recall': 0.9084802898216425, 'f1-score': 0.9081173364706174, 'support': 29334.0} | {'precision': 0.931144362294013, 'recall': 0.9312742892206995, 'f1-score': 0.9308677867499838, 'support': 29334.0} |
116
+ | 0.0014 | 45.0 | 3645 | 0.6566 | {'precision': 0.8540084388185654, 'recall': 0.8932038834951457, 'f1-score': 0.8731665228645384, 'support': 1133.0} | {'precision': 0.9349078036667196, 'recall': 0.9651993672612229, 'f1-score': 0.9498121309715513, 'support': 18333.0} | {'precision': 0.9299501192799826, 'recall': 0.8690717470612079, 'f1-score': 0.8984808800419066, 'support': 9868.0} | 0.9301 | {'precision': 0.9062887872550892, 'recall': 0.9091583326058589, 'f1-score': 0.9071531779593321, 'support': 29334.0} | {'precision': 0.9301153645209747, 'recall': 0.93008113451967, 'f1-score': 0.9295838546315028, 'support': 29334.0} |
117
+ | 0.0014 | 46.0 | 3726 | 0.6471 | {'precision': 0.8521959459459459, 'recall': 0.8905560458958517, 'f1-score': 0.870953819594303, 'support': 1133.0} | {'precision': 0.9352380952380952, 'recall': 0.9641629847815415, 'f1-score': 0.9494802997341067, 'support': 18333.0} | {'precision': 0.9281081081081081, 'recall': 0.8699837859748683, 'f1-score': 0.8981064964954492, 'support': 9868.0} | 0.9296 | {'precision': 0.9051807164307165, 'recall': 0.9082342722174205, 'f1-score': 0.9061802052746196, 'support': 29334.0} | {'precision': 0.9296321271414592, 'recall': 0.9296379627735734, 'f1-score': 0.9291650617046028, 'support': 29334.0} |
118
+ | 0.0014 | 47.0 | 3807 | 0.6518 | {'precision': 0.8537616229923922, 'recall': 0.8914386584289496, 'f1-score': 0.8721934369602763, 'support': 1133.0} | {'precision': 0.936179227795138, 'recall': 0.9641629847815415, 'f1-score': 0.9499650669103026, 'support': 18333.0} | {'precision': 0.9281553398058252, 'recall': 0.8719092014592622, 'f1-score': 0.8991535165639043, 'support': 9868.0} | 0.9303 | {'precision': 0.9060320635311184, 'recall': 0.9091702815565844, 'f1-score': 0.9071040068114944, 'support': 29334.0} | {'precision': 0.9302966726400262, 'recall': 0.9303197654598759, 'f1-score': 0.929868126992404, 'support': 29334.0} |
119
+ | 0.0014 | 48.0 | 3888 | 0.6532 | {'precision': 0.8524451939291737, 'recall': 0.8923212709620476, 'f1-score': 0.871927554980595, 'support': 1133.0} | {'precision': 0.9361364117771659, 'recall': 0.9642720776741396, 'f1-score': 0.9499959695837924, 'support': 18333.0} | {'precision': 0.9285405872193437, 'recall': 0.8717065261451156, 'f1-score': 0.8992264269287059, 'support': 9868.0} | 0.9304 | {'precision': 0.9057073976418945, 'recall': 0.9094332915937676, 'f1-score': 0.9070499838310311, 'support': 29334.0} | {'precision': 0.9303486655932715, 'recall': 0.930353855594191, 'f1-score': 0.929901698067265, 'support': 29334.0} |
120
+ | 0.0014 | 49.0 | 3969 | 0.6541 | {'precision': 0.8511354079058032, 'recall': 0.8932038834951457, 'f1-score': 0.8716623600344531, 'support': 1133.0} | {'precision': 0.9361330297092623, 'recall': 0.9642175312278405, 'f1-score': 0.9499677558039552, 'support': 18333.0} | {'precision': 0.9287410926365796, 'recall': 0.8717065261451156, 'f1-score': 0.8993204391008887, 'support': 9868.0} | 0.9304 | {'precision': 0.9053365100838816, 'recall': 0.9097093136227006, 'f1-score': 0.906983518313099, 'support': 29334.0} | {'precision': 0.9303634128640809, 'recall': 0.930353855594191, 'f1-score': 0.9299054480848339, 'support': 29334.0} |
121
+ | 0.0013 | 50.0 | 4050 | 0.6554 | {'precision': 0.8511354079058032, 'recall': 0.8932038834951457, 'f1-score': 0.8716623600344531, 'support': 1133.0} | {'precision': 0.9360508205399682, 'recall': 0.9644902634593356, 'f1-score': 0.9500577599871047, 'support': 18333.0} | {'precision': 0.9292274446245273, 'recall': 0.8715038508309688, 'f1-score': 0.8994404643622863, 'support': 9868.0} | 0.9305 | {'precision': 0.9054712243567663, 'recall': 0.9097326659284835, 'f1-score': 0.907053528127948, 'support': 29334.0} | {'precision': 0.9304756437468926, 'recall': 0.9304561259971365, 'f1-score': 0.9300020750695325, 'support': 29334.0} |
122
+
123
+
124
+ ### Framework versions
125
+
126
+ - Transformers 4.38.2
127
+ - Pytorch 2.2.1+cu121
128
+ - Datasets 2.18.0
129
+ - Tokenizers 0.15.2