Theoreticallyhugo
commited on
Commit
•
2c4ca7f
1
Parent(s):
6ec4a2d
trainer: training complete at 2024-03-04 07:02:46.134005.
Browse files- README.md +61 -61
- meta_data/README_s42_e50.md +61 -61
README.md
CHANGED
@@ -17,12 +17,12 @@ model-index:
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: spans
|
20 |
-
split: train[
|
21 |
args: spans
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,13 +32,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- B: {'precision': 0.
|
37 |
-
- I: {'precision': 0.
|
38 |
-
- O: {'precision': 0.
|
39 |
-
- Accuracy: 0.
|
40 |
-
- Macro avg: {'precision': 0.
|
41 |
-
- Weighted avg: {'precision': 0.
|
42 |
|
43 |
## Model description
|
44 |
|
@@ -67,58 +67,58 @@ The following hyperparameters were used during training:
|
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
-
| Training Loss | Epoch | Step | Validation Loss | B | I | O
|
71 |
-
|
72 |
-
| No log | 1.0 | 81 | 0.
|
73 |
-
| No log | 2.0 | 162 | 0.
|
74 |
-
| No log | 3.0 | 243 | 0.
|
75 |
-
| No log | 4.0 | 324 | 0.
|
76 |
-
| No log | 5.0 | 405 | 0.
|
77 |
-
| No log | 6.0 | 486 | 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
|
123 |
|
124 |
### Framework versions
|
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: spans
|
20 |
+
split: train[80%:100%]
|
21 |
args: spans
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.9467033563850972
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4604
|
36 |
+
- B: {'precision': 0.8831908831908832, 'recall': 0.8916586768935763, 'f1-score': 0.8874045801526719, 'support': 1043.0}
|
37 |
+
- I: {'precision': 0.9586151553364668, 'recall': 0.9639193083573487, 'f1-score': 0.9612599149327509, 'support': 17350.0}
|
38 |
+
- O: {'precision': 0.93125, 'recall': 0.9205506178192066, 'f1-score': 0.9258693993241034, 'support': 9226.0}
|
39 |
+
- Accuracy: 0.9467
|
40 |
+
- Macro avg: {'precision': 0.92435201284245, 'recall': 0.9253762010233771, 'f1-score': 0.924844631469842, 'support': 27619.0}
|
41 |
+
- Weighted avg: {'precision': 0.9466256394603638, 'recall': 0.9467033563850972, 'f1-score': 0.9466488134742982, 'support': 27619.0}
|
42 |
|
43 |
## Model description
|
44 |
|
|
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
+
| Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg |
|
71 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
72 |
+
| No log | 1.0 | 81 | 0.2048 | {'precision': 0.7901977644024075, 'recall': 0.8811121764141898, 'f1-score': 0.8331822302810515, 'support': 1043.0} | {'precision': 0.9443616777446711, 'recall': 0.9499135446685879, 'f1-score': 0.9471294753175105, 'support': 17350.0} | {'precision': 0.9103731674811195, 'recall': 0.8884673748103187, 'f1-score': 0.8992868897421833, 'support': 9226.0} | 0.9268 | {'precision': 0.8816442032093993, 'recall': 0.9064976986310321, 'f1-score': 0.8931995317802484, 'support': 27619.0} | {'precision': 0.9271861479533134, 'recall': 0.9267895289474637, 'f1-score': 0.9268447919078652, 'support': 27619.0} |
|
73 |
+
| No log | 2.0 | 162 | 0.1657 | {'precision': 0.8806706114398422, 'recall': 0.8561840843720039, 'f1-score': 0.8682547399124939, 'support': 1043.0} | {'precision': 0.9592919333448654, 'recall': 0.9589048991354466, 'f1-score': 0.9590983771942466, 'support': 17350.0} | {'precision': 0.9208594256100194, 'recall': 0.9244526338608281, 'f1-score': 0.9226525313717006, 'support': 9226.0} | 0.9435 | {'precision': 0.9202739901315756, 'recall': 0.9131805391227594, 'f1-score': 0.9166685494928136, 'support': 27619.0} | {'precision': 0.9434846863370583, 'recall': 0.9435171439950758, 'f1-score': 0.9434932036816766, 'support': 27619.0} |
|
74 |
+
| No log | 3.0 | 243 | 0.1539 | {'precision': 0.8625461254612546, 'recall': 0.8964525407478428, 'f1-score': 0.8791725434884815, 'support': 1043.0} | {'precision': 0.9557349825345015, 'recall': 0.9619596541786744, 'f1-score': 0.9588372159825352, 'support': 17350.0} | {'precision': 0.9282407407407407, 'recall': 0.9127465857359636, 'f1-score': 0.9204284621270084, 'support': 9226.0} | 0.9430 | {'precision': 0.9155072829121655, 'recall': 0.9237195935541602, 'f1-score': 0.9194794071993417, 'support': 27619.0} | {'precision': 0.9430314866542512, 'recall': 0.9430464535283681, 'f1-score': 0.9429985029052194, 'support': 27619.0} |
|
75 |
+
| No log | 4.0 | 324 | 0.1980 | {'precision': 0.8572727272727273, 'recall': 0.9041227229146692, 'f1-score': 0.8800746616892207, 'support': 1043.0} | {'precision': 0.9488876212207644, 'recall': 0.9587319884726225, 'f1-score': 0.9537844036697248, 'support': 17350.0} | {'precision': 0.9220157970853265, 'recall': 0.8983308042488619, 'f1-score': 0.9100192149327477, 'support': 9226.0} | 0.9365 | {'precision': 0.9093920485262728, 'recall': 0.9203951718787179, 'f1-score': 0.9146260934305644, 'support': 27619.0} | {'precision': 0.9364514800186444, 'recall': 0.9364929939534379, 'f1-score': 0.9363812792925563, 'support': 27619.0} |
|
76 |
+
| No log | 5.0 | 405 | 0.2007 | {'precision': 0.8847262247838616, 'recall': 0.8830297219558965, 'f1-score': 0.883877159309021, 'support': 1043.0} | {'precision': 0.9456643513331839, 'recall': 0.9730259365994236, 'f1-score': 0.9591500482927107, 'support': 17350.0} | {'precision': 0.9454503781801513, 'recall': 0.8942120095382614, 'f1-score': 0.9191176470588236, 'support': 9226.0} | 0.9433 | {'precision': 0.9252803180990656, 'recall': 0.9167558893645271, 'f1-score': 0.9207149515535183, 'support': 27619.0} | {'precision': 0.9432916158141273, 'recall': 0.9432999022412107, 'f1-score': 0.9429348139614955, 'support': 27619.0} |
|
77 |
+
| No log | 6.0 | 486 | 0.1657 | {'precision': 0.882186616399623, 'recall': 0.8974113135186961, 'f1-score': 0.8897338403041826, 'support': 1043.0} | {'precision': 0.9707969272268809, 'recall': 0.954178674351585, 'f1-score': 0.9624160683661308, 'support': 17350.0} | {'precision': 0.9161493950552341, 'recall': 0.9438543247344461, 'f1-score': 0.9297955261331482, 'support': 9226.0} | 0.9486 | {'precision': 0.9230443128939126, 'recall': 0.9318147708682424, 'f1-score': 0.9273151449344872, 'support': 27619.0} | {'precision': 0.9491959030765336, 'recall': 0.9485861182519281, 'f1-score': 0.9487745648174827, 'support': 27619.0} |
|
78 |
+
| 0.1585 | 7.0 | 567 | 0.2591 | {'precision': 0.85, 'recall': 0.912751677852349, 'f1-score': 0.8802588996763754, 'support': 1043.0} | {'precision': 0.9354661691269275, 'recall': 0.9825360230547551, 'f1-score': 0.958423523458803, 'support': 17350.0} | {'precision': 0.9664088931851136, 'recall': 0.8668978972469109, 'f1-score': 0.9139526911210146, 'support': 9226.0} | 0.9413 | {'precision': 0.917291687437347, 'recall': 0.9207285327180049, 'f1-score': 0.9175450380853977, 'support': 27619.0} | {'precision': 0.9425749115781907, 'recall': 0.9412723125384699, 'f1-score': 0.9406164485555297, 'support': 27619.0} |
|
79 |
+
| 0.1585 | 8.0 | 648 | 0.2693 | {'precision': 0.84967919340055, 'recall': 0.8887823585810163, 'f1-score': 0.8687910028116214, 'support': 1043.0} | {'precision': 0.956997878562009, 'recall': 0.9620172910662824, 'f1-score': 0.9595010203788336, 'support': 17350.0} | {'precision': 0.9282491471332673, 'recall': 0.9142640364188164, 'f1-score': 0.9212035166275324, 'support': 9226.0} | 0.9433 | {'precision': 0.9116420730319422, 'recall': 0.9216878953553717, 'f1-score': 0.9164985132726624, 'support': 27619.0} | {'precision': 0.9433417293609165, 'recall': 0.9432999022412107, 'f1-score': 0.9432823550422136, 'support': 27619.0} |
|
80 |
+
| 0.1585 | 9.0 | 729 | 0.3087 | {'precision': 0.8485687903970452, 'recall': 0.8811121764141898, 'f1-score': 0.8645343367826904, 'support': 1043.0} | {'precision': 0.934535260814599, 'recall': 0.9799423631123919, 'f1-score': 0.9567003348057282, 'support': 17350.0} | {'precision': 0.9586479683567062, 'recall': 0.8668978972469109, 'f1-score': 0.9104673003585861, 'support': 9226.0} | 0.9384 | {'precision': 0.9139173398561168, 'recall': 0.9093174789244975, 'f1-score': 0.910567323982335, 'support': 27619.0} | {'precision': 0.9393435743356523, 'recall': 0.9384481697382236, 'f1-score': 0.9377758584761231, 'support': 27619.0} |
|
81 |
+
| 0.1585 | 10.0 | 810 | 0.2796 | {'precision': 0.897410358565737, 'recall': 0.8638542665388304, 'f1-score': 0.8803126526624329, 'support': 1043.0} | {'precision': 0.9592919333448654, 'recall': 0.9589048991354466, 'f1-score': 0.9590983771942466, 'support': 17350.0} | {'precision': 0.9197584124245038, 'recall': 0.9243442445263386, 'f1-score': 0.9220456265542221, 'support': 9226.0} | 0.9438 | {'precision': 0.9254869014450354, 'recall': 0.9157011367335386, 'f1-score': 0.9204855521369671, 'support': 27619.0} | {'precision': 0.9437490553802075, 'recall': 0.9437705927079184, 'f1-score': 0.9437458232244597, 'support': 27619.0} |
|
82 |
+
| 0.1585 | 11.0 | 891 | 0.3198 | {'precision': 0.8899707887049659, 'recall': 0.8763183125599233, 'f1-score': 0.8830917874396135, 'support': 1043.0} | {'precision': 0.9647182727751448, 'recall': 0.9503170028818444, 'f1-score': 0.9574634882843123, 'support': 17350.0} | {'precision': 0.9067466582465004, 'recall': 0.9337741166269239, 'f1-score': 0.9200619426496501, 'support': 9226.0} | 0.9420 | {'precision': 0.9204785732422037, 'recall': 0.9201364773562305, 'f1-score': 0.9202057394578587, 'support': 27619.0} | {'precision': 0.9425303680165918, 'recall': 0.9419964517180202, 'f1-score': 0.942161111514465, 'support': 27619.0} |
|
83 |
+
| 0.1585 | 12.0 | 972 | 0.3526 | {'precision': 0.8663507109004739, 'recall': 0.8763183125599233, 'f1-score': 0.871306005719733, 'support': 1043.0} | {'precision': 0.9464205312922107, 'recall': 0.9692219020172911, 'f1-score': 0.9576855173984852, 'support': 17350.0} | {'precision': 0.9386084583901774, 'recall': 0.8948623455451984, 'f1-score': 0.9162135168127844, 'support': 9226.0} | 0.9409 | {'precision': 0.917126566860954, 'recall': 0.9134675200408043, 'f1-score': 0.9150683466436677, 'support': 27619.0} | {'precision': 0.9407871989028143, 'recall': 0.9408740359897172, 'f1-score': 0.9405699625961891, 'support': 27619.0} |
|
84 |
+
| 0.021 | 13.0 | 1053 | 0.3594 | {'precision': 0.875, 'recall': 0.8791946308724832, 'f1-score': 0.877092300334768, 'support': 1043.0} | {'precision': 0.9486991778353419, 'recall': 0.9710086455331413, 'f1-score': 0.9597242793665263, 'support': 17350.0} | {'precision': 0.9419040054464994, 'recall': 0.8997398655972252, 'f1-score': 0.9203392649259936, 'support': 9226.0} | 0.9437 | {'precision': 0.9218677277606138, 'recall': 0.9166477140009498, 'f1-score': 0.9190519482090961, 'support': 27619.0} | {'precision': 0.9436461164304495, 'recall': 0.943734385748941, 'f1-score': 0.943447393984779, 'support': 27619.0} |
|
85 |
+
| 0.021 | 14.0 | 1134 | 0.3840 | {'precision': 0.8467741935483871, 'recall': 0.9060402684563759, 'f1-score': 0.8754052802223252, 'support': 1043.0} | {'precision': 0.9392880904856953, 'recall': 0.9764265129682997, 'f1-score': 0.9574973153224439, 'support': 17350.0} | {'precision': 0.9539388213062477, 'recall': 0.8754606546715803, 'f1-score': 0.9130164471825015, 'support': 9226.0} | 0.9400 | {'precision': 0.9133337017801101, 'recall': 0.9193091453654186, 'f1-score': 0.9153063475757568, 'support': 27619.0} | {'precision': 0.9406884180878825, 'recall': 0.9400412759332344, 'f1-score': 0.9395385738014427, 'support': 27619.0} |
|
86 |
+
| 0.021 | 15.0 | 1215 | 0.3763 | {'precision': 0.8755935422602089, 'recall': 0.8839884947267498, 'f1-score': 0.8797709923664121, 'support': 1043.0} | {'precision': 0.954302299112224, 'recall': 0.9665129682997118, 'f1-score': 0.9603688219460511, 'support': 17350.0} | {'precision': 0.9346230820547031, 'recall': 0.9111207457186213, 'f1-score': 0.922722283205269, 'support': 9226.0} | 0.9449 | {'precision': 0.9215063078090453, 'recall': 0.920540736248361, 'f1-score': 0.9209540325059108, 'support': 27619.0} | {'precision': 0.9447562007752335, 'recall': 0.9448930084362215, 'f1-score': 0.944749483712443, 'support': 27619.0} |
|
87 |
+
| 0.021 | 16.0 | 1296 | 0.3690 | {'precision': 0.8976377952755905, 'recall': 0.8744007670182167, 'f1-score': 0.8858669256920835, 'support': 1043.0} | {'precision': 0.9701351590627397, 'recall': 0.9473775216138328, 'f1-score': 0.9586212929752427, 'support': 17350.0} | {'precision': 0.9027950310559006, 'recall': 0.9452633860828095, 'f1-score': 0.9235412474849094, 'support': 9226.0} | 0.9439 | {'precision': 0.923522661798077, 'recall': 0.922347224904953, 'f1-score': 0.9226764887174118, 'support': 27619.0} | {'precision': 0.9449027186622512, 'recall': 0.9439154205438285, 'f1-score': 0.9441554794131966, 'support': 27619.0} |
|
88 |
+
| 0.021 | 17.0 | 1377 | 0.3570 | {'precision': 0.8867562380038387, 'recall': 0.8859060402684564, 'f1-score': 0.8863309352517986, 'support': 1043.0} | {'precision': 0.9659090909090909, 'recall': 0.9602305475504322, 'f1-score': 0.9630614486386496, 'support': 17350.0} | {'precision': 0.9245363918962375, 'recall': 0.9348580099718188, 'f1-score': 0.9296685529506872, 'support': 9226.0} | 0.9489 | {'precision': 0.9257339069363891, 'recall': 0.9269981992635691, 'f1-score': 0.9263536456137119, 'support': 27619.0} | {'precision': 0.9490996138580476, 'recall': 0.9489481878417032, 'f1-score': 0.9490090650954502, 'support': 27619.0} |
|
89 |
+
| 0.021 | 18.0 | 1458 | 0.4152 | {'precision': 0.8671655753040225, 'recall': 0.8887823585810163, 'f1-score': 0.8778409090909091, 'support': 1043.0} | {'precision': 0.9355230471984544, 'recall': 0.9767723342939482, 'f1-score': 0.9557028055829692, 'support': 17350.0} | {'precision': 0.9524599881446354, 'recall': 0.8707999132885325, 'f1-score': 0.9098012570069645, 'support': 9226.0} | 0.9380 | {'precision': 0.9183828702157042, 'recall': 0.9121182020544989, 'f1-score': 0.9144483238936143, 'support': 27619.0} | {'precision': 0.9385993125948691, 'recall': 0.938049893189471, 'f1-score': 0.9374292386470396, 'support': 27619.0} |
|
90 |
+
| 0.0058 | 19.0 | 1539 | 0.3720 | {'precision': 0.8919182083739046, 'recall': 0.87823585810163, 'f1-score': 0.8850241545893719, 'support': 1043.0} | {'precision': 0.956838628857761, 'recall': 0.9685302593659942, 'f1-score': 0.9626489459211732, 'support': 17350.0} | {'precision': 0.9375415282392027, 'recall': 0.9176241057879905, 'f1-score': 0.927475898334794, 'support': 9226.0} | 0.9481 | {'precision': 0.9287661218236227, 'recall': 0.9214634077518715, 'f1-score': 0.9250496662817796, 'support': 27619.0} | {'precision': 0.9479408755404257, 'recall': 0.9481154277852203, 'f1-score': 0.9479681394332119, 'support': 27619.0} |
|
91 |
+
| 0.0058 | 20.0 | 1620 | 0.3677 | {'precision': 0.8684957426679281, 'recall': 0.8801534036433365, 'f1-score': 0.8742857142857142, 'support': 1043.0} | {'precision': 0.9469289396996189, 'recall': 0.9738904899135447, 'f1-score': 0.9602204921293401, 'support': 17350.0} | {'precision': 0.9473503097040605, 'recall': 0.8951875135486668, 'f1-score': 0.9205305394560855, 'support': 9226.0} | 0.9441 | {'precision': 0.9209249973572025, 'recall': 0.9164104690351826, 'f1-score': 0.9183455819570466, 'support': 27619.0} | {'precision': 0.9441077562808465, 'recall': 0.9440602483797386, 'f1-score': 0.9437170171065533, 'support': 27619.0} |
|
92 |
+
| 0.0058 | 21.0 | 1701 | 0.3749 | {'precision': 0.868252516010979, 'recall': 0.909875359539789, 'f1-score': 0.8885767790262172, 'support': 1043.0} | {'precision': 0.9537903271531439, 'recall': 0.9695677233429395, 'f1-score': 0.9616143138880155, 'support': 17350.0} | {'precision': 0.9420632242096973, 'recall': 0.9076522870149577, 'f1-score': 0.9245376759591498, 'support': 9226.0} | 0.9466 | {'precision': 0.9213686891246068, 'recall': 0.9290317899658954, 'f1-score': 0.9249095896244609, 'support': 27619.0} | {'precision': 0.9466427045463329, 'recall': 0.9466309424671422, 'f1-score': 0.9464708542988716, 'support': 27619.0} |
|
93 |
+
| 0.0058 | 22.0 | 1782 | 0.3899 | {'precision': 0.8754789272030651, 'recall': 0.8763183125599233, 'f1-score': 0.875898418782942, 'support': 1043.0} | {'precision': 0.9475306911822412, 'recall': 0.9742363112391931, 'f1-score': 0.9606979453806588, 'support': 17350.0} | {'precision': 0.94757326007326, 'recall': 0.897246910903967, 'f1-score': 0.9217236387930074, 'support': 9226.0} | 0.9448 | {'precision': 0.9235276261528554, 'recall': 0.9159338449010278, 'f1-score': 0.919440000985536, 'support': 27619.0} | {'precision': 0.9448239585256736, 'recall': 0.9448205945182664, 'f1-score': 0.9444764001104068, 'support': 27619.0} |
|
94 |
+
| 0.0058 | 23.0 | 1863 | 0.4506 | {'precision': 0.8712121212121212, 'recall': 0.8820709491850431, 'f1-score': 0.8766079085278704, 'support': 1043.0} | {'precision': 0.9385663638378019, 'recall': 0.9765417867435159, 'f1-score': 0.9571775605897973, 'support': 17350.0} | {'precision': 0.9515920573375631, 'recall': 0.877845220030349, 'f1-score': 0.9132322264193494, 'support': 9226.0} | 0.9400 | {'precision': 0.9204568474624955, 'recall': 0.9121526519863027, 'f1-score': 0.9156725651790056, 'support': 27619.0} | {'precision': 0.9403739808105457, 'recall': 0.9400050689742568, 'f1-score': 0.939455202786939, 'support': 27619.0} |
|
95 |
+
| 0.0058 | 24.0 | 1944 | 0.4239 | {'precision': 0.8859649122807017, 'recall': 0.8715244487056567, 'f1-score': 0.8786853552440792, 'support': 1043.0} | {'precision': 0.9575452599919023, 'recall': 0.954178674351585, 'f1-score': 0.9558590028580501, 'support': 17350.0} | {'precision': 0.9121883061049011, 'recall': 0.9199002818122697, 'f1-score': 0.9160280626011873, 'support': 9226.0} | 0.9396 | {'precision': 0.9185661594591683, 'recall': 0.9152011349565038, 'f1-score': 0.9168574735677723, 'support': 27619.0} | {'precision': 0.9396908279261412, 'recall': 0.9396067924255042, 'f1-score': 0.9396392856607877, 'support': 27619.0} |
|
96 |
+
| 0.0026 | 25.0 | 2025 | 0.3982 | {'precision': 0.88124410933082, 'recall': 0.8964525407478428, 'f1-score': 0.8887832699619772, 'support': 1043.0} | {'precision': 0.9556860955857192, 'recall': 0.9658213256484149, 'f1-score': 0.9607269808508199, 'support': 17350.0} | {'precision': 0.9340647163120568, 'recall': 0.9136137004118795, 'f1-score': 0.9237260273972602, 'support': 9226.0} | 0.9458 | {'precision': 0.9236649737428652, 'recall': 0.9252958556027124, 'f1-score': 0.9244120927366858, 'support': 27619.0} | {'precision': 0.9456523566073828, 'recall': 0.9457619754516818, 'f1-score': 0.9456501103261954, 'support': 27619.0} |
|
97 |
+
| 0.0026 | 26.0 | 2106 | 0.4067 | {'precision': 0.8740601503759399, 'recall': 0.8916586768935763, 'f1-score': 0.8827717133364974, 'support': 1043.0} | {'precision': 0.9489364103142809, 'recall': 0.9693371757925072, 'f1-score': 0.9590283123770422, 'support': 17350.0} | {'precision': 0.9393115942028986, 'recall': 0.8991979189247779, 'f1-score': 0.9188171447557869, 'support': 9226.0} | 0.9430 | {'precision': 0.9207693849643731, 'recall': 0.9200645905369539, 'f1-score': 0.9202057234897755, 'support': 27619.0} | {'precision': 0.942893668268613, 'recall': 0.9429740396104132, 'f1-score': 0.9427162132687112, 'support': 27619.0} |
|
98 |
+
| 0.0026 | 27.0 | 2187 | 0.4415 | {'precision': 0.8786407766990292, 'recall': 0.8676893576222435, 'f1-score': 0.8731307284129282, 'support': 1043.0} | {'precision': 0.9424291543234028, 'recall': 0.9718155619596541, 'f1-score': 0.9568967963451661, 'support': 17350.0} | {'precision': 0.9418257070590941, 'recall': 0.8879254281378712, 'f1-score': 0.9140816781968311, 'support': 9226.0} | 0.9399 | {'precision': 0.920965212693842, 'recall': 0.9091434492399229, 'f1-score': 0.9147030676516418, 'support': 27619.0} | {'precision': 0.9398186802902107, 'recall': 0.9398602411383468, 'f1-score': 0.9394312730137688, 'support': 27619.0} |
|
99 |
+
| 0.0026 | 28.0 | 2268 | 0.4068 | {'precision': 0.8871745419479267, 'recall': 0.8820709491850431, 'f1-score': 0.8846153846153846, 'support': 1043.0} | {'precision': 0.9559995446265938, 'recall': 0.9680115273775216, 'f1-score': 0.9619680394066098, 'support': 17350.0} | {'precision': 0.9367650321721767, 'recall': 0.9152395404292217, 'f1-score': 0.9258771929824562, 'support': 9226.0} | 0.9471 | {'precision': 0.9266463729155657, 'recall': 0.9217740056639289, 'f1-score': 0.9241535390014834, 'support': 27619.0} | {'precision': 0.9469752465094172, 'recall': 0.9471378398928274, 'f1-score': 0.9469909233612611, 'support': 27619.0} |
|
100 |
+
| 0.0026 | 29.0 | 2349 | 0.4006 | {'precision': 0.8782527881040892, 'recall': 0.9060402684563759, 'f1-score': 0.8919301557338367, 'support': 1043.0} | {'precision': 0.9576391652925457, 'recall': 0.9707204610951009, 'f1-score': 0.964135443798838, 'support': 17350.0} | {'precision': 0.944059848146494, 'recall': 0.9164318231086062, 'f1-score': 0.9300406995930042, 'support': 9226.0} | 0.9501 | {'precision': 0.9266506005143763, 'recall': 0.9310641842200277, 'f1-score': 0.9287020997085597, 'support': 27619.0} | {'precision': 0.9501051209246456, 'recall': 0.9501430174879612, 'f1-score': 0.9500195009517102, 'support': 27619.0} |
|
101 |
+
| 0.0026 | 30.0 | 2430 | 0.4661 | {'precision': 0.8726415094339622, 'recall': 0.8868648130393096, 'f1-score': 0.8796956728483118, 'support': 1043.0} | {'precision': 0.947067399349557, 'recall': 0.9734870317002882, 'f1-score': 0.9600954979536152, 'support': 17350.0} | {'precision': 0.9477363896848138, 'recall': 0.8962714068935617, 'f1-score': 0.9212857222438862, 'support': 9226.0} | 0.9444 | {'precision': 0.922481766156111, 'recall': 0.9188744172110531, 'f1-score': 0.9203589643486044, 'support': 27619.0} | {'precision': 0.9444802637418637, 'recall': 0.9444223179695137, 'f1-score': 0.9440950631702127, 'support': 27619.0} |
|
102 |
+
| 0.0015 | 31.0 | 2511 | 0.4837 | {'precision': 0.8710900473933649, 'recall': 0.8811121764141898, 'f1-score': 0.8760724499523355, 'support': 1043.0} | {'precision': 0.9430224794124193, 'recall': 0.9768299711815562, 'f1-score': 0.9596285601041844, 'support': 17350.0} | {'precision': 0.953328677839851, 'recall': 0.8878170388033817, 'f1-score': 0.9194073408912335, 'support': 9226.0} | 0.9435 | {'precision': 0.9224804015485452, 'recall': 0.9152530621330426, 'f1-score': 0.9183694503159178, 'support': 27619.0} | {'precision': 0.9437487714612122, 'recall': 0.9434809370360984, 'f1-score': 0.943037445605214, 'support': 27619.0} |
|
103 |
+
| 0.0015 | 32.0 | 2592 | 0.4702 | {'precision': 0.868421052631579, 'recall': 0.8859060402684564, 'f1-score': 0.8770764119601329, 'support': 1043.0} | {'precision': 0.9465066726477515, 'recall': 0.9729106628242075, 'f1-score': 0.9595270577535243, 'support': 17350.0} | {'precision': 0.9464510950579063, 'recall': 0.8946455668762194, 'f1-score': 0.919819468434836, 'support': 9226.0} | 0.9435 | {'precision': 0.9204596067790788, 'recall': 0.9178207566562945, 'f1-score': 0.9188076460494976, 'support': 27619.0} | {'precision': 0.9435392929265168, 'recall': 0.9434809370360984, 'f1-score': 0.943149265559139, 'support': 27619.0} |
|
104 |
+
| 0.0015 | 33.0 | 2673 | 0.4380 | {'precision': 0.8738317757009346, 'recall': 0.8964525407478428, 'f1-score': 0.8849976336961666, 'support': 1043.0} | {'precision': 0.9569585569128896, 'recall': 0.9662247838616714, 'f1-score': 0.9615693472524951, 'support': 17350.0} | {'precision': 0.9359982283246595, 'recall': 0.9162150444396271, 'f1-score': 0.9260009859232076, 'support': 9226.0} | 0.9469 | {'precision': 0.9222628536461612, 'recall': 0.9262974563497138, 'f1-score': 0.9241893222906231, 'support': 27619.0} | {'precision': 0.946817667512148, 'recall': 0.9468843911799848, 'f1-score': 0.9467962563055651, 'support': 27619.0} |
|
105 |
+
| 0.0015 | 34.0 | 2754 | 0.4419 | {'precision': 0.880838894184938, 'recall': 0.8859060402684564, 'f1-score': 0.8833652007648184, 'support': 1043.0} | {'precision': 0.9541201156921681, 'recall': 0.9696829971181556, 'f1-score': 0.9618386073235572, 'support': 17350.0} | {'precision': 0.9406959829920555, 'recall': 0.9112291350531108, 'f1-score': 0.9257281286131146, 'support': 9226.0} | 0.9470 | {'precision': 0.9252183309563873, 'recall': 0.9222727241465742, 'f1-score': 0.9236439789004968, 'support': 27619.0} | {'precision': 0.9468684642086502, 'recall': 0.9469930120569173, 'f1-score': 0.9468126092923719, 'support': 27619.0} |
|
106 |
+
| 0.0015 | 35.0 | 2835 | 0.4607 | {'precision': 0.8798076923076923, 'recall': 0.8772770853307766, 'f1-score': 0.8785405664906385, 'support': 1043.0} | {'precision': 0.945586592178771, 'recall': 0.9755619596541787, 'f1-score': 0.9603404255319149, 'support': 17350.0} | {'precision': 0.9508007835004033, 'recall': 0.8944287882072404, 'f1-score': 0.9217537000837756, 'support': 9226.0} | 0.9447 | {'precision': 0.9253983559956221, 'recall': 0.9157559443973985, 'f1-score': 0.920211564035443, 'support': 27619.0} | {'precision': 0.9448443037746955, 'recall': 0.9447481806003114, 'f1-score': 0.9443616289800995, 'support': 27619.0} |
|
107 |
+
| 0.0015 | 36.0 | 2916 | 0.4413 | {'precision': 0.8901960784313725, 'recall': 0.8705656759348035, 'f1-score': 0.8802714493456132, 'support': 1043.0} | {'precision': 0.9574089997133849, 'recall': 0.9626512968299712, 'f1-score': 0.9600229918091681, 'support': 17350.0} | {'precision': 0.9270264365304784, 'recall': 0.9197918924777801, 'f1-score': 0.9233949945593034, 'support': 9226.0} | 0.9449 | {'precision': 0.924877171558412, 'recall': 0.9176696217475183, 'f1-score': 0.9212298119046949, 'support': 27619.0} | {'precision': 0.9447216249053674, 'recall': 0.9448568014772439, 'f1-score': 0.944775851745562, 'support': 27619.0} |
|
108 |
+
| 0.0015 | 37.0 | 2997 | 0.4391 | {'precision': 0.8872832369942196, 'recall': 0.8830297219558965, 'f1-score': 0.8851513695338779, 'support': 1043.0} | {'precision': 0.9576338928856915, 'recall': 0.966685878962536, 'f1-score': 0.9621385956860945, 'support': 17350.0} | {'precision': 0.9353700231609132, 'recall': 0.9192499458053327, 'f1-score': 0.9272399278412508, 'support': 9226.0} | 0.9477 | {'precision': 0.9267623843469414, 'recall': 0.9229885155745885, 'f1-score': 0.9248432976870743, 'support': 27619.0} | {'precision': 0.9475400373450994, 'recall': 0.9476809442774902, 'f1-score': 0.9475735214106575, 'support': 27619.0} |
|
109 |
+
| 0.0012 | 38.0 | 3078 | 0.4364 | {'precision': 0.8781869688385269, 'recall': 0.8916586768935763, 'f1-score': 0.8848715509039011, 'support': 1043.0} | {'precision': 0.9536389977842168, 'recall': 0.9674351585014409, 'f1-score': 0.9604875396984349, 'support': 17350.0} | {'precision': 0.9374930237749749, 'recall': 0.9103620203771949, 'f1-score': 0.9237283475391805, 'support': 9226.0} | 0.9455 | {'precision': 0.9231063301325729, 'recall': 0.9231519519240706, 'f1-score': 0.9230291460471722, 'support': 27619.0} | {'precision': 0.9453961496579408, 'recall': 0.9455085267388392, 'f1-score': 0.9453527490407726, 'support': 27619.0} |
|
110 |
+
| 0.0012 | 39.0 | 3159 | 0.4426 | {'precision': 0.8866666666666667, 'recall': 0.8926174496644296, 'f1-score': 0.8896321070234113, 'support': 1043.0} | {'precision': 0.9584571428571429, 'recall': 0.9667435158501441, 'f1-score': 0.9625824964131994, 'support': 17350.0} | {'precision': 0.9358253390671518, 'recall': 0.9199002818122697, 'f1-score': 0.9277944793659471, 'support': 9226.0} | 0.9483 | {'precision': 0.9269830495303205, 'recall': 0.9264204157756145, 'f1-score': 0.9266696942675193, 'support': 27619.0} | {'precision': 0.9481860074636412, 'recall': 0.9482964625801079, 'f1-score': 0.9482068310592221, 'support': 27619.0} |
|
111 |
+
| 0.0012 | 40.0 | 3240 | 0.4584 | {'precision': 0.8852772466539197, 'recall': 0.887823585810163, 'f1-score': 0.8865485878410723, 'support': 1043.0} | {'precision': 0.9512016660100185, 'recall': 0.9740634005763689, 'f1-score': 0.9624967964233846, 'support': 17350.0} | {'precision': 0.9486713604360664, 'recall': 0.905484500325168, 'f1-score': 0.9265749778172139, 'support': 9226.0} | 0.9479 | {'precision': 0.9283834243666682, 'recall': 0.9224571622372332, 'f1-score': 0.925206787360557, 'support': 27619.0} | {'precision': 0.947866868638148, 'recall': 0.9478981860313552, 'f1-score': 0.9476291806512029, 'support': 27619.0} |
|
112 |
+
| 0.0012 | 41.0 | 3321 | 0.4565 | {'precision': 0.8815165876777251, 'recall': 0.8916586768935763, 'f1-score': 0.886558627264061, 'support': 1043.0} | {'precision': 0.9584047537424294, 'recall': 0.9668011527377521, 'f1-score': 0.9625846436359462, 'support': 17350.0} | {'precision': 0.9363275215184286, 'recall': 0.9196835031432907, 'f1-score': 0.927930883639545, 'support': 9226.0} | 0.9482 | {'precision': 0.9254162876461943, 'recall': 0.9260477775915397, 'f1-score': 0.9256913848465174, 'support': 27619.0} | {'precision': 0.9481263619938463, 'recall': 0.9482240486621528, 'f1-score': 0.9481376786914271, 'support': 27619.0} |
|
113 |
+
| 0.0012 | 42.0 | 3402 | 0.4558 | {'precision': 0.8779564806054873, 'recall': 0.8897411313518696, 'f1-score': 0.8838095238095238, 'support': 1043.0} | {'precision': 0.9507137237270991, 'recall': 0.9750432276657061, 'f1-score': 0.9627247894377418, 'support': 17350.0} | {'precision': 0.9507299270072993, 'recall': 0.9035334923043572, 'f1-score': 0.9265310659108592, 'support': 9226.0} | 0.9479 | {'precision': 0.9264667104466285, 'recall': 0.9227726171073108, 'f1-score': 0.9243551263860416, 'support': 27619.0} | {'precision': 0.9479715421451187, 'recall': 0.9479343929903328, 'f1-score': 0.947654297555007, 'support': 27619.0} |
|
114 |
+
| 0.0012 | 43.0 | 3483 | 0.4610 | {'precision': 0.875234521575985, 'recall': 0.8945349952061361, 'f1-score': 0.8847795163584636, 'support': 1043.0} | {'precision': 0.9506872370266479, 'recall': 0.9767146974063401, 'f1-score': 0.9635252309879175, 'support': 17350.0} | {'precision': 0.9546287809349221, 'recall': 0.9030999349663993, 'f1-score': 0.9281497159407374, 'support': 9226.0} | 0.9490 | {'precision': 0.9268501798458516, 'recall': 0.9247832091929585, 'f1-score': 0.9254848210957062, 'support': 27619.0} | {'precision': 0.949154506003899, 'recall': 0.9490206017596582, 'f1-score': 0.9487344607868312, 'support': 27619.0} |
|
115 |
+
| 0.0008 | 44.0 | 3564 | 0.4501 | {'precision': 0.8805687203791469, 'recall': 0.8906999041227229, 'f1-score': 0.8856053384175404, 'support': 1043.0} | {'precision': 0.9565341070717415, 'recall': 0.9690489913544669, 'f1-score': 0.9627508804077075, 'support': 17350.0} | {'precision': 0.9403582953154557, 'recall': 0.9159982657706481, 'f1-score': 0.9280184483610608, 'support': 9226.0} | 0.9484 | {'precision': 0.9258203742554482, 'recall': 0.9252490537492793, 'f1-score': 0.9254582223954363, 'support': 27619.0} | {'precision': 0.9482619054140469, 'recall': 0.9483688764980629, 'f1-score': 0.9482353578197027, 'support': 27619.0} |
|
116 |
+
| 0.0008 | 45.0 | 3645 | 0.4542 | {'precision': 0.8861480075901328, 'recall': 0.8954937679769894, 'f1-score': 0.8907963757749165, 'support': 1043.0} | {'precision': 0.9586123991069895, 'recall': 0.9651873198847263, 'f1-score': 0.9618886240271116, 'support': 17350.0} | {'precision': 0.9334872471416007, 'recall': 0.9203338391502276, 'f1-score': 0.9268638794891386, 'support': 9226.0} | 0.9476 | {'precision': 0.9260825512795744, 'recall': 0.9270049756706479, 'f1-score': 0.9265162930970557, 'support': 27619.0} | {'precision': 0.9474829225732714, 'recall': 0.9475723234005576, 'f1-score': 0.9475040515214316, 'support': 27619.0} |
|
117 |
+
| 0.0008 | 46.0 | 3726 | 0.4560 | {'precision': 0.882186616399623, 'recall': 0.8974113135186961, 'f1-score': 0.8897338403041826, 'support': 1043.0} | {'precision': 0.9587003775311749, 'recall': 0.9659942363112392, 'f1-score': 0.9623334864492421, 'support': 17350.0} | {'precision': 0.9353239312472454, 'recall': 0.9201170604812486, 'f1-score': 0.9276581794339416, 'support': 9226.0} | 0.9481 | {'precision': 0.9254036417260144, 'recall': 0.927840870103728, 'f1-score': 0.926575168729122, 'support': 27619.0} | {'precision': 0.9480021282724854, 'recall': 0.9480792208262429, 'f1-score': 0.9480087167815329, 'support': 27619.0} |
|
118 |
+
| 0.0008 | 47.0 | 3807 | 0.4668 | {'precision': 0.8813559322033898, 'recall': 0.8974113135186961, 'f1-score': 0.8893111638954868, 'support': 1043.0} | {'precision': 0.961000057607005, 'recall': 0.9614985590778098, 'f1-score': 0.9612492437120056, 'support': 17350.0} | {'precision': 0.9279191128506197, 'recall': 0.925102969867765, 'f1-score': 0.9265089014329135, 'support': 9226.0} | 0.9469 | {'precision': 0.9234250342203382, 'recall': 0.9280042808214236, 'f1-score': 0.9256897696801353, 'support': 27619.0} | {'precision': 0.9469418506075343, 'recall': 0.9469205981389623, 'f1-score': 0.9469277326103895, 'support': 27619.0} |
|
119 |
+
| 0.0008 | 48.0 | 3888 | 0.4643 | {'precision': 0.882186616399623, 'recall': 0.8974113135186961, 'f1-score': 0.8897338403041826, 'support': 1043.0} | {'precision': 0.9605293440736479, 'recall': 0.9621902017291066, 'f1-score': 0.961359055571552, 'support': 17350.0} | {'precision': 0.9289605578557419, 'recall': 0.9241274658573596, 'f1-score': 0.9265377091936535, 'support': 9226.0} | 0.9470 | {'precision': 0.9238921727763376, 'recall': 0.9279096603683875, 'f1-score': 0.9258768683564625, 'support': 27619.0} | {'precision': 0.9470254124826993, 'recall': 0.9470292190158949, 'f1-score': 0.947022300395537, 'support': 27619.0} |
|
120 |
+
| 0.0008 | 49.0 | 3969 | 0.4590 | {'precision': 0.8819641170915958, 'recall': 0.8954937679769894, 'f1-score': 0.8886774500475738, 'support': 1043.0} | {'precision': 0.958698516354471, 'recall': 0.9646109510086456, 'f1-score': 0.961645645990749, 'support': 17350.0} | {'precision': 0.9327694166758211, 'recall': 0.9203338391502276, 'f1-score': 0.9265099023405532, 'support': 9226.0} | 0.9472 | {'precision': 0.9244773500406293, 'recall': 0.9268128527119542, 'f1-score': 0.9256109994596254, 'support': 27619.0} | {'precision': 0.9471392328153709, 'recall': 0.9472102538107824, 'f1-score': 0.9471531517192171, 'support': 27619.0} |
|
121 |
+
| 0.0009 | 50.0 | 4050 | 0.4604 | {'precision': 0.8831908831908832, 'recall': 0.8916586768935763, 'f1-score': 0.8874045801526719, 'support': 1043.0} | {'precision': 0.9586151553364668, 'recall': 0.9639193083573487, 'f1-score': 0.9612599149327509, 'support': 17350.0} | {'precision': 0.93125, 'recall': 0.9205506178192066, 'f1-score': 0.9258693993241034, 'support': 9226.0} | 0.9467 | {'precision': 0.92435201284245, 'recall': 0.9253762010233771, 'f1-score': 0.924844631469842, 'support': 27619.0} | {'precision': 0.9466256394603638, 'recall': 0.9467033563850972, 'f1-score': 0.9466488134742982, 'support': 27619.0} |
|
122 |
|
123 |
|
124 |
### Framework versions
|
meta_data/README_s42_e50.md
CHANGED
@@ -17,12 +17,12 @@ model-index:
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: spans
|
20 |
-
split: train[
|
21 |
args: spans
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,13 +32,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- B: {'precision': 0.
|
37 |
-
- I: {'precision': 0.
|
38 |
-
- O: {'precision': 0.
|
39 |
-
- Accuracy: 0.
|
40 |
-
- Macro avg: {'precision': 0.
|
41 |
-
- Weighted avg: {'precision': 0.
|
42 |
|
43 |
## Model description
|
44 |
|
@@ -67,58 +67,58 @@ The following hyperparameters were used during training:
|
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
-
| Training Loss | Epoch | Step | Validation Loss | B | I | O
|
71 |
-
|
72 |
-
| No log | 1.0 | 81 | 0.
|
73 |
-
| No log | 2.0 | 162 | 0.
|
74 |
-
| No log | 3.0 | 243 | 0.
|
75 |
-
| No log | 4.0 | 324 | 0.
|
76 |
-
| No log | 5.0 | 405 | 0.
|
77 |
-
| No log | 6.0 | 486 | 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
|
123 |
|
124 |
### Framework versions
|
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: spans
|
20 |
+
split: train[80%:100%]
|
21 |
args: spans
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.9467033563850972
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4604
|
36 |
+
- B: {'precision': 0.8831908831908832, 'recall': 0.8916586768935763, 'f1-score': 0.8874045801526719, 'support': 1043.0}
|
37 |
+
- I: {'precision': 0.9586151553364668, 'recall': 0.9639193083573487, 'f1-score': 0.9612599149327509, 'support': 17350.0}
|
38 |
+
- O: {'precision': 0.93125, 'recall': 0.9205506178192066, 'f1-score': 0.9258693993241034, 'support': 9226.0}
|
39 |
+
- Accuracy: 0.9467
|
40 |
+
- Macro avg: {'precision': 0.92435201284245, 'recall': 0.9253762010233771, 'f1-score': 0.924844631469842, 'support': 27619.0}
|
41 |
+
- Weighted avg: {'precision': 0.9466256394603638, 'recall': 0.9467033563850972, 'f1-score': 0.9466488134742982, 'support': 27619.0}
|
42 |
|
43 |
## Model description
|
44 |
|
|
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
+
| Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg |
|
71 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
72 |
+
| No log | 1.0 | 81 | 0.2048 | {'precision': 0.7901977644024075, 'recall': 0.8811121764141898, 'f1-score': 0.8331822302810515, 'support': 1043.0} | {'precision': 0.9443616777446711, 'recall': 0.9499135446685879, 'f1-score': 0.9471294753175105, 'support': 17350.0} | {'precision': 0.9103731674811195, 'recall': 0.8884673748103187, 'f1-score': 0.8992868897421833, 'support': 9226.0} | 0.9268 | {'precision': 0.8816442032093993, 'recall': 0.9064976986310321, 'f1-score': 0.8931995317802484, 'support': 27619.0} | {'precision': 0.9271861479533134, 'recall': 0.9267895289474637, 'f1-score': 0.9268447919078652, 'support': 27619.0} |
|
73 |
+
| No log | 2.0 | 162 | 0.1657 | {'precision': 0.8806706114398422, 'recall': 0.8561840843720039, 'f1-score': 0.8682547399124939, 'support': 1043.0} | {'precision': 0.9592919333448654, 'recall': 0.9589048991354466, 'f1-score': 0.9590983771942466, 'support': 17350.0} | {'precision': 0.9208594256100194, 'recall': 0.9244526338608281, 'f1-score': 0.9226525313717006, 'support': 9226.0} | 0.9435 | {'precision': 0.9202739901315756, 'recall': 0.9131805391227594, 'f1-score': 0.9166685494928136, 'support': 27619.0} | {'precision': 0.9434846863370583, 'recall': 0.9435171439950758, 'f1-score': 0.9434932036816766, 'support': 27619.0} |
|
74 |
+
| No log | 3.0 | 243 | 0.1539 | {'precision': 0.8625461254612546, 'recall': 0.8964525407478428, 'f1-score': 0.8791725434884815, 'support': 1043.0} | {'precision': 0.9557349825345015, 'recall': 0.9619596541786744, 'f1-score': 0.9588372159825352, 'support': 17350.0} | {'precision': 0.9282407407407407, 'recall': 0.9127465857359636, 'f1-score': 0.9204284621270084, 'support': 9226.0} | 0.9430 | {'precision': 0.9155072829121655, 'recall': 0.9237195935541602, 'f1-score': 0.9194794071993417, 'support': 27619.0} | {'precision': 0.9430314866542512, 'recall': 0.9430464535283681, 'f1-score': 0.9429985029052194, 'support': 27619.0} |
|
75 |
+
| No log | 4.0 | 324 | 0.1980 | {'precision': 0.8572727272727273, 'recall': 0.9041227229146692, 'f1-score': 0.8800746616892207, 'support': 1043.0} | {'precision': 0.9488876212207644, 'recall': 0.9587319884726225, 'f1-score': 0.9537844036697248, 'support': 17350.0} | {'precision': 0.9220157970853265, 'recall': 0.8983308042488619, 'f1-score': 0.9100192149327477, 'support': 9226.0} | 0.9365 | {'precision': 0.9093920485262728, 'recall': 0.9203951718787179, 'f1-score': 0.9146260934305644, 'support': 27619.0} | {'precision': 0.9364514800186444, 'recall': 0.9364929939534379, 'f1-score': 0.9363812792925563, 'support': 27619.0} |
|
76 |
+
| No log | 5.0 | 405 | 0.2007 | {'precision': 0.8847262247838616, 'recall': 0.8830297219558965, 'f1-score': 0.883877159309021, 'support': 1043.0} | {'precision': 0.9456643513331839, 'recall': 0.9730259365994236, 'f1-score': 0.9591500482927107, 'support': 17350.0} | {'precision': 0.9454503781801513, 'recall': 0.8942120095382614, 'f1-score': 0.9191176470588236, 'support': 9226.0} | 0.9433 | {'precision': 0.9252803180990656, 'recall': 0.9167558893645271, 'f1-score': 0.9207149515535183, 'support': 27619.0} | {'precision': 0.9432916158141273, 'recall': 0.9432999022412107, 'f1-score': 0.9429348139614955, 'support': 27619.0} |
|
77 |
+
| No log | 6.0 | 486 | 0.1657 | {'precision': 0.882186616399623, 'recall': 0.8974113135186961, 'f1-score': 0.8897338403041826, 'support': 1043.0} | {'precision': 0.9707969272268809, 'recall': 0.954178674351585, 'f1-score': 0.9624160683661308, 'support': 17350.0} | {'precision': 0.9161493950552341, 'recall': 0.9438543247344461, 'f1-score': 0.9297955261331482, 'support': 9226.0} | 0.9486 | {'precision': 0.9230443128939126, 'recall': 0.9318147708682424, 'f1-score': 0.9273151449344872, 'support': 27619.0} | {'precision': 0.9491959030765336, 'recall': 0.9485861182519281, 'f1-score': 0.9487745648174827, 'support': 27619.0} |
|
78 |
+
| 0.1585 | 7.0 | 567 | 0.2591 | {'precision': 0.85, 'recall': 0.912751677852349, 'f1-score': 0.8802588996763754, 'support': 1043.0} | {'precision': 0.9354661691269275, 'recall': 0.9825360230547551, 'f1-score': 0.958423523458803, 'support': 17350.0} | {'precision': 0.9664088931851136, 'recall': 0.8668978972469109, 'f1-score': 0.9139526911210146, 'support': 9226.0} | 0.9413 | {'precision': 0.917291687437347, 'recall': 0.9207285327180049, 'f1-score': 0.9175450380853977, 'support': 27619.0} | {'precision': 0.9425749115781907, 'recall': 0.9412723125384699, 'f1-score': 0.9406164485555297, 'support': 27619.0} |
|
79 |
+
| 0.1585 | 8.0 | 648 | 0.2693 | {'precision': 0.84967919340055, 'recall': 0.8887823585810163, 'f1-score': 0.8687910028116214, 'support': 1043.0} | {'precision': 0.956997878562009, 'recall': 0.9620172910662824, 'f1-score': 0.9595010203788336, 'support': 17350.0} | {'precision': 0.9282491471332673, 'recall': 0.9142640364188164, 'f1-score': 0.9212035166275324, 'support': 9226.0} | 0.9433 | {'precision': 0.9116420730319422, 'recall': 0.9216878953553717, 'f1-score': 0.9164985132726624, 'support': 27619.0} | {'precision': 0.9433417293609165, 'recall': 0.9432999022412107, 'f1-score': 0.9432823550422136, 'support': 27619.0} |
|
80 |
+
| 0.1585 | 9.0 | 729 | 0.3087 | {'precision': 0.8485687903970452, 'recall': 0.8811121764141898, 'f1-score': 0.8645343367826904, 'support': 1043.0} | {'precision': 0.934535260814599, 'recall': 0.9799423631123919, 'f1-score': 0.9567003348057282, 'support': 17350.0} | {'precision': 0.9586479683567062, 'recall': 0.8668978972469109, 'f1-score': 0.9104673003585861, 'support': 9226.0} | 0.9384 | {'precision': 0.9139173398561168, 'recall': 0.9093174789244975, 'f1-score': 0.910567323982335, 'support': 27619.0} | {'precision': 0.9393435743356523, 'recall': 0.9384481697382236, 'f1-score': 0.9377758584761231, 'support': 27619.0} |
|
81 |
+
| 0.1585 | 10.0 | 810 | 0.2796 | {'precision': 0.897410358565737, 'recall': 0.8638542665388304, 'f1-score': 0.8803126526624329, 'support': 1043.0} | {'precision': 0.9592919333448654, 'recall': 0.9589048991354466, 'f1-score': 0.9590983771942466, 'support': 17350.0} | {'precision': 0.9197584124245038, 'recall': 0.9243442445263386, 'f1-score': 0.9220456265542221, 'support': 9226.0} | 0.9438 | {'precision': 0.9254869014450354, 'recall': 0.9157011367335386, 'f1-score': 0.9204855521369671, 'support': 27619.0} | {'precision': 0.9437490553802075, 'recall': 0.9437705927079184, 'f1-score': 0.9437458232244597, 'support': 27619.0} |
|
82 |
+
| 0.1585 | 11.0 | 891 | 0.3198 | {'precision': 0.8899707887049659, 'recall': 0.8763183125599233, 'f1-score': 0.8830917874396135, 'support': 1043.0} | {'precision': 0.9647182727751448, 'recall': 0.9503170028818444, 'f1-score': 0.9574634882843123, 'support': 17350.0} | {'precision': 0.9067466582465004, 'recall': 0.9337741166269239, 'f1-score': 0.9200619426496501, 'support': 9226.0} | 0.9420 | {'precision': 0.9204785732422037, 'recall': 0.9201364773562305, 'f1-score': 0.9202057394578587, 'support': 27619.0} | {'precision': 0.9425303680165918, 'recall': 0.9419964517180202, 'f1-score': 0.942161111514465, 'support': 27619.0} |
|
83 |
+
| 0.1585 | 12.0 | 972 | 0.3526 | {'precision': 0.8663507109004739, 'recall': 0.8763183125599233, 'f1-score': 0.871306005719733, 'support': 1043.0} | {'precision': 0.9464205312922107, 'recall': 0.9692219020172911, 'f1-score': 0.9576855173984852, 'support': 17350.0} | {'precision': 0.9386084583901774, 'recall': 0.8948623455451984, 'f1-score': 0.9162135168127844, 'support': 9226.0} | 0.9409 | {'precision': 0.917126566860954, 'recall': 0.9134675200408043, 'f1-score': 0.9150683466436677, 'support': 27619.0} | {'precision': 0.9407871989028143, 'recall': 0.9408740359897172, 'f1-score': 0.9405699625961891, 'support': 27619.0} |
|
84 |
+
| 0.021 | 13.0 | 1053 | 0.3594 | {'precision': 0.875, 'recall': 0.8791946308724832, 'f1-score': 0.877092300334768, 'support': 1043.0} | {'precision': 0.9486991778353419, 'recall': 0.9710086455331413, 'f1-score': 0.9597242793665263, 'support': 17350.0} | {'precision': 0.9419040054464994, 'recall': 0.8997398655972252, 'f1-score': 0.9203392649259936, 'support': 9226.0} | 0.9437 | {'precision': 0.9218677277606138, 'recall': 0.9166477140009498, 'f1-score': 0.9190519482090961, 'support': 27619.0} | {'precision': 0.9436461164304495, 'recall': 0.943734385748941, 'f1-score': 0.943447393984779, 'support': 27619.0} |
|
85 |
+
| 0.021 | 14.0 | 1134 | 0.3840 | {'precision': 0.8467741935483871, 'recall': 0.9060402684563759, 'f1-score': 0.8754052802223252, 'support': 1043.0} | {'precision': 0.9392880904856953, 'recall': 0.9764265129682997, 'f1-score': 0.9574973153224439, 'support': 17350.0} | {'precision': 0.9539388213062477, 'recall': 0.8754606546715803, 'f1-score': 0.9130164471825015, 'support': 9226.0} | 0.9400 | {'precision': 0.9133337017801101, 'recall': 0.9193091453654186, 'f1-score': 0.9153063475757568, 'support': 27619.0} | {'precision': 0.9406884180878825, 'recall': 0.9400412759332344, 'f1-score': 0.9395385738014427, 'support': 27619.0} |
|
86 |
+
| 0.021 | 15.0 | 1215 | 0.3763 | {'precision': 0.8755935422602089, 'recall': 0.8839884947267498, 'f1-score': 0.8797709923664121, 'support': 1043.0} | {'precision': 0.954302299112224, 'recall': 0.9665129682997118, 'f1-score': 0.9603688219460511, 'support': 17350.0} | {'precision': 0.9346230820547031, 'recall': 0.9111207457186213, 'f1-score': 0.922722283205269, 'support': 9226.0} | 0.9449 | {'precision': 0.9215063078090453, 'recall': 0.920540736248361, 'f1-score': 0.9209540325059108, 'support': 27619.0} | {'precision': 0.9447562007752335, 'recall': 0.9448930084362215, 'f1-score': 0.944749483712443, 'support': 27619.0} |
|
87 |
+
| 0.021 | 16.0 | 1296 | 0.3690 | {'precision': 0.8976377952755905, 'recall': 0.8744007670182167, 'f1-score': 0.8858669256920835, 'support': 1043.0} | {'precision': 0.9701351590627397, 'recall': 0.9473775216138328, 'f1-score': 0.9586212929752427, 'support': 17350.0} | {'precision': 0.9027950310559006, 'recall': 0.9452633860828095, 'f1-score': 0.9235412474849094, 'support': 9226.0} | 0.9439 | {'precision': 0.923522661798077, 'recall': 0.922347224904953, 'f1-score': 0.9226764887174118, 'support': 27619.0} | {'precision': 0.9449027186622512, 'recall': 0.9439154205438285, 'f1-score': 0.9441554794131966, 'support': 27619.0} |
|
88 |
+
| 0.021 | 17.0 | 1377 | 0.3570 | {'precision': 0.8867562380038387, 'recall': 0.8859060402684564, 'f1-score': 0.8863309352517986, 'support': 1043.0} | {'precision': 0.9659090909090909, 'recall': 0.9602305475504322, 'f1-score': 0.9630614486386496, 'support': 17350.0} | {'precision': 0.9245363918962375, 'recall': 0.9348580099718188, 'f1-score': 0.9296685529506872, 'support': 9226.0} | 0.9489 | {'precision': 0.9257339069363891, 'recall': 0.9269981992635691, 'f1-score': 0.9263536456137119, 'support': 27619.0} | {'precision': 0.9490996138580476, 'recall': 0.9489481878417032, 'f1-score': 0.9490090650954502, 'support': 27619.0} |
|
89 |
+
| 0.021 | 18.0 | 1458 | 0.4152 | {'precision': 0.8671655753040225, 'recall': 0.8887823585810163, 'f1-score': 0.8778409090909091, 'support': 1043.0} | {'precision': 0.9355230471984544, 'recall': 0.9767723342939482, 'f1-score': 0.9557028055829692, 'support': 17350.0} | {'precision': 0.9524599881446354, 'recall': 0.8707999132885325, 'f1-score': 0.9098012570069645, 'support': 9226.0} | 0.9380 | {'precision': 0.9183828702157042, 'recall': 0.9121182020544989, 'f1-score': 0.9144483238936143, 'support': 27619.0} | {'precision': 0.9385993125948691, 'recall': 0.938049893189471, 'f1-score': 0.9374292386470396, 'support': 27619.0} |
|
90 |
+
| 0.0058 | 19.0 | 1539 | 0.3720 | {'precision': 0.8919182083739046, 'recall': 0.87823585810163, 'f1-score': 0.8850241545893719, 'support': 1043.0} | {'precision': 0.956838628857761, 'recall': 0.9685302593659942, 'f1-score': 0.9626489459211732, 'support': 17350.0} | {'precision': 0.9375415282392027, 'recall': 0.9176241057879905, 'f1-score': 0.927475898334794, 'support': 9226.0} | 0.9481 | {'precision': 0.9287661218236227, 'recall': 0.9214634077518715, 'f1-score': 0.9250496662817796, 'support': 27619.0} | {'precision': 0.9479408755404257, 'recall': 0.9481154277852203, 'f1-score': 0.9479681394332119, 'support': 27619.0} |
|
91 |
+
| 0.0058 | 20.0 | 1620 | 0.3677 | {'precision': 0.8684957426679281, 'recall': 0.8801534036433365, 'f1-score': 0.8742857142857142, 'support': 1043.0} | {'precision': 0.9469289396996189, 'recall': 0.9738904899135447, 'f1-score': 0.9602204921293401, 'support': 17350.0} | {'precision': 0.9473503097040605, 'recall': 0.8951875135486668, 'f1-score': 0.9205305394560855, 'support': 9226.0} | 0.9441 | {'precision': 0.9209249973572025, 'recall': 0.9164104690351826, 'f1-score': 0.9183455819570466, 'support': 27619.0} | {'precision': 0.9441077562808465, 'recall': 0.9440602483797386, 'f1-score': 0.9437170171065533, 'support': 27619.0} |
|
92 |
+
| 0.0058 | 21.0 | 1701 | 0.3749 | {'precision': 0.868252516010979, 'recall': 0.909875359539789, 'f1-score': 0.8885767790262172, 'support': 1043.0} | {'precision': 0.9537903271531439, 'recall': 0.9695677233429395, 'f1-score': 0.9616143138880155, 'support': 17350.0} | {'precision': 0.9420632242096973, 'recall': 0.9076522870149577, 'f1-score': 0.9245376759591498, 'support': 9226.0} | 0.9466 | {'precision': 0.9213686891246068, 'recall': 0.9290317899658954, 'f1-score': 0.9249095896244609, 'support': 27619.0} | {'precision': 0.9466427045463329, 'recall': 0.9466309424671422, 'f1-score': 0.9464708542988716, 'support': 27619.0} |
|
93 |
+
| 0.0058 | 22.0 | 1782 | 0.3899 | {'precision': 0.8754789272030651, 'recall': 0.8763183125599233, 'f1-score': 0.875898418782942, 'support': 1043.0} | {'precision': 0.9475306911822412, 'recall': 0.9742363112391931, 'f1-score': 0.9606979453806588, 'support': 17350.0} | {'precision': 0.94757326007326, 'recall': 0.897246910903967, 'f1-score': 0.9217236387930074, 'support': 9226.0} | 0.9448 | {'precision': 0.9235276261528554, 'recall': 0.9159338449010278, 'f1-score': 0.919440000985536, 'support': 27619.0} | {'precision': 0.9448239585256736, 'recall': 0.9448205945182664, 'f1-score': 0.9444764001104068, 'support': 27619.0} |
|
94 |
+
| 0.0058 | 23.0 | 1863 | 0.4506 | {'precision': 0.8712121212121212, 'recall': 0.8820709491850431, 'f1-score': 0.8766079085278704, 'support': 1043.0} | {'precision': 0.9385663638378019, 'recall': 0.9765417867435159, 'f1-score': 0.9571775605897973, 'support': 17350.0} | {'precision': 0.9515920573375631, 'recall': 0.877845220030349, 'f1-score': 0.9132322264193494, 'support': 9226.0} | 0.9400 | {'precision': 0.9204568474624955, 'recall': 0.9121526519863027, 'f1-score': 0.9156725651790056, 'support': 27619.0} | {'precision': 0.9403739808105457, 'recall': 0.9400050689742568, 'f1-score': 0.939455202786939, 'support': 27619.0} |
|
95 |
+
| 0.0058 | 24.0 | 1944 | 0.4239 | {'precision': 0.8859649122807017, 'recall': 0.8715244487056567, 'f1-score': 0.8786853552440792, 'support': 1043.0} | {'precision': 0.9575452599919023, 'recall': 0.954178674351585, 'f1-score': 0.9558590028580501, 'support': 17350.0} | {'precision': 0.9121883061049011, 'recall': 0.9199002818122697, 'f1-score': 0.9160280626011873, 'support': 9226.0} | 0.9396 | {'precision': 0.9185661594591683, 'recall': 0.9152011349565038, 'f1-score': 0.9168574735677723, 'support': 27619.0} | {'precision': 0.9396908279261412, 'recall': 0.9396067924255042, 'f1-score': 0.9396392856607877, 'support': 27619.0} |
|
96 |
+
| 0.0026 | 25.0 | 2025 | 0.3982 | {'precision': 0.88124410933082, 'recall': 0.8964525407478428, 'f1-score': 0.8887832699619772, 'support': 1043.0} | {'precision': 0.9556860955857192, 'recall': 0.9658213256484149, 'f1-score': 0.9607269808508199, 'support': 17350.0} | {'precision': 0.9340647163120568, 'recall': 0.9136137004118795, 'f1-score': 0.9237260273972602, 'support': 9226.0} | 0.9458 | {'precision': 0.9236649737428652, 'recall': 0.9252958556027124, 'f1-score': 0.9244120927366858, 'support': 27619.0} | {'precision': 0.9456523566073828, 'recall': 0.9457619754516818, 'f1-score': 0.9456501103261954, 'support': 27619.0} |
|
97 |
+
| 0.0026 | 26.0 | 2106 | 0.4067 | {'precision': 0.8740601503759399, 'recall': 0.8916586768935763, 'f1-score': 0.8827717133364974, 'support': 1043.0} | {'precision': 0.9489364103142809, 'recall': 0.9693371757925072, 'f1-score': 0.9590283123770422, 'support': 17350.0} | {'precision': 0.9393115942028986, 'recall': 0.8991979189247779, 'f1-score': 0.9188171447557869, 'support': 9226.0} | 0.9430 | {'precision': 0.9207693849643731, 'recall': 0.9200645905369539, 'f1-score': 0.9202057234897755, 'support': 27619.0} | {'precision': 0.942893668268613, 'recall': 0.9429740396104132, 'f1-score': 0.9427162132687112, 'support': 27619.0} |
|
98 |
+
| 0.0026 | 27.0 | 2187 | 0.4415 | {'precision': 0.8786407766990292, 'recall': 0.8676893576222435, 'f1-score': 0.8731307284129282, 'support': 1043.0} | {'precision': 0.9424291543234028, 'recall': 0.9718155619596541, 'f1-score': 0.9568967963451661, 'support': 17350.0} | {'precision': 0.9418257070590941, 'recall': 0.8879254281378712, 'f1-score': 0.9140816781968311, 'support': 9226.0} | 0.9399 | {'precision': 0.920965212693842, 'recall': 0.9091434492399229, 'f1-score': 0.9147030676516418, 'support': 27619.0} | {'precision': 0.9398186802902107, 'recall': 0.9398602411383468, 'f1-score': 0.9394312730137688, 'support': 27619.0} |
|
99 |
+
| 0.0026 | 28.0 | 2268 | 0.4068 | {'precision': 0.8871745419479267, 'recall': 0.8820709491850431, 'f1-score': 0.8846153846153846, 'support': 1043.0} | {'precision': 0.9559995446265938, 'recall': 0.9680115273775216, 'f1-score': 0.9619680394066098, 'support': 17350.0} | {'precision': 0.9367650321721767, 'recall': 0.9152395404292217, 'f1-score': 0.9258771929824562, 'support': 9226.0} | 0.9471 | {'precision': 0.9266463729155657, 'recall': 0.9217740056639289, 'f1-score': 0.9241535390014834, 'support': 27619.0} | {'precision': 0.9469752465094172, 'recall': 0.9471378398928274, 'f1-score': 0.9469909233612611, 'support': 27619.0} |
|
100 |
+
| 0.0026 | 29.0 | 2349 | 0.4006 | {'precision': 0.8782527881040892, 'recall': 0.9060402684563759, 'f1-score': 0.8919301557338367, 'support': 1043.0} | {'precision': 0.9576391652925457, 'recall': 0.9707204610951009, 'f1-score': 0.964135443798838, 'support': 17350.0} | {'precision': 0.944059848146494, 'recall': 0.9164318231086062, 'f1-score': 0.9300406995930042, 'support': 9226.0} | 0.9501 | {'precision': 0.9266506005143763, 'recall': 0.9310641842200277, 'f1-score': 0.9287020997085597, 'support': 27619.0} | {'precision': 0.9501051209246456, 'recall': 0.9501430174879612, 'f1-score': 0.9500195009517102, 'support': 27619.0} |
|
101 |
+
| 0.0026 | 30.0 | 2430 | 0.4661 | {'precision': 0.8726415094339622, 'recall': 0.8868648130393096, 'f1-score': 0.8796956728483118, 'support': 1043.0} | {'precision': 0.947067399349557, 'recall': 0.9734870317002882, 'f1-score': 0.9600954979536152, 'support': 17350.0} | {'precision': 0.9477363896848138, 'recall': 0.8962714068935617, 'f1-score': 0.9212857222438862, 'support': 9226.0} | 0.9444 | {'precision': 0.922481766156111, 'recall': 0.9188744172110531, 'f1-score': 0.9203589643486044, 'support': 27619.0} | {'precision': 0.9444802637418637, 'recall': 0.9444223179695137, 'f1-score': 0.9440950631702127, 'support': 27619.0} |
|
102 |
+
| 0.0015 | 31.0 | 2511 | 0.4837 | {'precision': 0.8710900473933649, 'recall': 0.8811121764141898, 'f1-score': 0.8760724499523355, 'support': 1043.0} | {'precision': 0.9430224794124193, 'recall': 0.9768299711815562, 'f1-score': 0.9596285601041844, 'support': 17350.0} | {'precision': 0.953328677839851, 'recall': 0.8878170388033817, 'f1-score': 0.9194073408912335, 'support': 9226.0} | 0.9435 | {'precision': 0.9224804015485452, 'recall': 0.9152530621330426, 'f1-score': 0.9183694503159178, 'support': 27619.0} | {'precision': 0.9437487714612122, 'recall': 0.9434809370360984, 'f1-score': 0.943037445605214, 'support': 27619.0} |
|
103 |
+
| 0.0015 | 32.0 | 2592 | 0.4702 | {'precision': 0.868421052631579, 'recall': 0.8859060402684564, 'f1-score': 0.8770764119601329, 'support': 1043.0} | {'precision': 0.9465066726477515, 'recall': 0.9729106628242075, 'f1-score': 0.9595270577535243, 'support': 17350.0} | {'precision': 0.9464510950579063, 'recall': 0.8946455668762194, 'f1-score': 0.919819468434836, 'support': 9226.0} | 0.9435 | {'precision': 0.9204596067790788, 'recall': 0.9178207566562945, 'f1-score': 0.9188076460494976, 'support': 27619.0} | {'precision': 0.9435392929265168, 'recall': 0.9434809370360984, 'f1-score': 0.943149265559139, 'support': 27619.0} |
|
104 |
+
| 0.0015 | 33.0 | 2673 | 0.4380 | {'precision': 0.8738317757009346, 'recall': 0.8964525407478428, 'f1-score': 0.8849976336961666, 'support': 1043.0} | {'precision': 0.9569585569128896, 'recall': 0.9662247838616714, 'f1-score': 0.9615693472524951, 'support': 17350.0} | {'precision': 0.9359982283246595, 'recall': 0.9162150444396271, 'f1-score': 0.9260009859232076, 'support': 9226.0} | 0.9469 | {'precision': 0.9222628536461612, 'recall': 0.9262974563497138, 'f1-score': 0.9241893222906231, 'support': 27619.0} | {'precision': 0.946817667512148, 'recall': 0.9468843911799848, 'f1-score': 0.9467962563055651, 'support': 27619.0} |
|
105 |
+
| 0.0015 | 34.0 | 2754 | 0.4419 | {'precision': 0.880838894184938, 'recall': 0.8859060402684564, 'f1-score': 0.8833652007648184, 'support': 1043.0} | {'precision': 0.9541201156921681, 'recall': 0.9696829971181556, 'f1-score': 0.9618386073235572, 'support': 17350.0} | {'precision': 0.9406959829920555, 'recall': 0.9112291350531108, 'f1-score': 0.9257281286131146, 'support': 9226.0} | 0.9470 | {'precision': 0.9252183309563873, 'recall': 0.9222727241465742, 'f1-score': 0.9236439789004968, 'support': 27619.0} | {'precision': 0.9468684642086502, 'recall': 0.9469930120569173, 'f1-score': 0.9468126092923719, 'support': 27619.0} |
|
106 |
+
| 0.0015 | 35.0 | 2835 | 0.4607 | {'precision': 0.8798076923076923, 'recall': 0.8772770853307766, 'f1-score': 0.8785405664906385, 'support': 1043.0} | {'precision': 0.945586592178771, 'recall': 0.9755619596541787, 'f1-score': 0.9603404255319149, 'support': 17350.0} | {'precision': 0.9508007835004033, 'recall': 0.8944287882072404, 'f1-score': 0.9217537000837756, 'support': 9226.0} | 0.9447 | {'precision': 0.9253983559956221, 'recall': 0.9157559443973985, 'f1-score': 0.920211564035443, 'support': 27619.0} | {'precision': 0.9448443037746955, 'recall': 0.9447481806003114, 'f1-score': 0.9443616289800995, 'support': 27619.0} |
|
107 |
+
| 0.0015 | 36.0 | 2916 | 0.4413 | {'precision': 0.8901960784313725, 'recall': 0.8705656759348035, 'f1-score': 0.8802714493456132, 'support': 1043.0} | {'precision': 0.9574089997133849, 'recall': 0.9626512968299712, 'f1-score': 0.9600229918091681, 'support': 17350.0} | {'precision': 0.9270264365304784, 'recall': 0.9197918924777801, 'f1-score': 0.9233949945593034, 'support': 9226.0} | 0.9449 | {'precision': 0.924877171558412, 'recall': 0.9176696217475183, 'f1-score': 0.9212298119046949, 'support': 27619.0} | {'precision': 0.9447216249053674, 'recall': 0.9448568014772439, 'f1-score': 0.944775851745562, 'support': 27619.0} |
|
108 |
+
| 0.0015 | 37.0 | 2997 | 0.4391 | {'precision': 0.8872832369942196, 'recall': 0.8830297219558965, 'f1-score': 0.8851513695338779, 'support': 1043.0} | {'precision': 0.9576338928856915, 'recall': 0.966685878962536, 'f1-score': 0.9621385956860945, 'support': 17350.0} | {'precision': 0.9353700231609132, 'recall': 0.9192499458053327, 'f1-score': 0.9272399278412508, 'support': 9226.0} | 0.9477 | {'precision': 0.9267623843469414, 'recall': 0.9229885155745885, 'f1-score': 0.9248432976870743, 'support': 27619.0} | {'precision': 0.9475400373450994, 'recall': 0.9476809442774902, 'f1-score': 0.9475735214106575, 'support': 27619.0} |
|
109 |
+
| 0.0012 | 38.0 | 3078 | 0.4364 | {'precision': 0.8781869688385269, 'recall': 0.8916586768935763, 'f1-score': 0.8848715509039011, 'support': 1043.0} | {'precision': 0.9536389977842168, 'recall': 0.9674351585014409, 'f1-score': 0.9604875396984349, 'support': 17350.0} | {'precision': 0.9374930237749749, 'recall': 0.9103620203771949, 'f1-score': 0.9237283475391805, 'support': 9226.0} | 0.9455 | {'precision': 0.9231063301325729, 'recall': 0.9231519519240706, 'f1-score': 0.9230291460471722, 'support': 27619.0} | {'precision': 0.9453961496579408, 'recall': 0.9455085267388392, 'f1-score': 0.9453527490407726, 'support': 27619.0} |
|
110 |
+
| 0.0012 | 39.0 | 3159 | 0.4426 | {'precision': 0.8866666666666667, 'recall': 0.8926174496644296, 'f1-score': 0.8896321070234113, 'support': 1043.0} | {'precision': 0.9584571428571429, 'recall': 0.9667435158501441, 'f1-score': 0.9625824964131994, 'support': 17350.0} | {'precision': 0.9358253390671518, 'recall': 0.9199002818122697, 'f1-score': 0.9277944793659471, 'support': 9226.0} | 0.9483 | {'precision': 0.9269830495303205, 'recall': 0.9264204157756145, 'f1-score': 0.9266696942675193, 'support': 27619.0} | {'precision': 0.9481860074636412, 'recall': 0.9482964625801079, 'f1-score': 0.9482068310592221, 'support': 27619.0} |
|
111 |
+
| 0.0012 | 40.0 | 3240 | 0.4584 | {'precision': 0.8852772466539197, 'recall': 0.887823585810163, 'f1-score': 0.8865485878410723, 'support': 1043.0} | {'precision': 0.9512016660100185, 'recall': 0.9740634005763689, 'f1-score': 0.9624967964233846, 'support': 17350.0} | {'precision': 0.9486713604360664, 'recall': 0.905484500325168, 'f1-score': 0.9265749778172139, 'support': 9226.0} | 0.9479 | {'precision': 0.9283834243666682, 'recall': 0.9224571622372332, 'f1-score': 0.925206787360557, 'support': 27619.0} | {'precision': 0.947866868638148, 'recall': 0.9478981860313552, 'f1-score': 0.9476291806512029, 'support': 27619.0} |
|
112 |
+
| 0.0012 | 41.0 | 3321 | 0.4565 | {'precision': 0.8815165876777251, 'recall': 0.8916586768935763, 'f1-score': 0.886558627264061, 'support': 1043.0} | {'precision': 0.9584047537424294, 'recall': 0.9668011527377521, 'f1-score': 0.9625846436359462, 'support': 17350.0} | {'precision': 0.9363275215184286, 'recall': 0.9196835031432907, 'f1-score': 0.927930883639545, 'support': 9226.0} | 0.9482 | {'precision': 0.9254162876461943, 'recall': 0.9260477775915397, 'f1-score': 0.9256913848465174, 'support': 27619.0} | {'precision': 0.9481263619938463, 'recall': 0.9482240486621528, 'f1-score': 0.9481376786914271, 'support': 27619.0} |
|
113 |
+
| 0.0012 | 42.0 | 3402 | 0.4558 | {'precision': 0.8779564806054873, 'recall': 0.8897411313518696, 'f1-score': 0.8838095238095238, 'support': 1043.0} | {'precision': 0.9507137237270991, 'recall': 0.9750432276657061, 'f1-score': 0.9627247894377418, 'support': 17350.0} | {'precision': 0.9507299270072993, 'recall': 0.9035334923043572, 'f1-score': 0.9265310659108592, 'support': 9226.0} | 0.9479 | {'precision': 0.9264667104466285, 'recall': 0.9227726171073108, 'f1-score': 0.9243551263860416, 'support': 27619.0} | {'precision': 0.9479715421451187, 'recall': 0.9479343929903328, 'f1-score': 0.947654297555007, 'support': 27619.0} |
|
114 |
+
| 0.0012 | 43.0 | 3483 | 0.4610 | {'precision': 0.875234521575985, 'recall': 0.8945349952061361, 'f1-score': 0.8847795163584636, 'support': 1043.0} | {'precision': 0.9506872370266479, 'recall': 0.9767146974063401, 'f1-score': 0.9635252309879175, 'support': 17350.0} | {'precision': 0.9546287809349221, 'recall': 0.9030999349663993, 'f1-score': 0.9281497159407374, 'support': 9226.0} | 0.9490 | {'precision': 0.9268501798458516, 'recall': 0.9247832091929585, 'f1-score': 0.9254848210957062, 'support': 27619.0} | {'precision': 0.949154506003899, 'recall': 0.9490206017596582, 'f1-score': 0.9487344607868312, 'support': 27619.0} |
|
115 |
+
| 0.0008 | 44.0 | 3564 | 0.4501 | {'precision': 0.8805687203791469, 'recall': 0.8906999041227229, 'f1-score': 0.8856053384175404, 'support': 1043.0} | {'precision': 0.9565341070717415, 'recall': 0.9690489913544669, 'f1-score': 0.9627508804077075, 'support': 17350.0} | {'precision': 0.9403582953154557, 'recall': 0.9159982657706481, 'f1-score': 0.9280184483610608, 'support': 9226.0} | 0.9484 | {'precision': 0.9258203742554482, 'recall': 0.9252490537492793, 'f1-score': 0.9254582223954363, 'support': 27619.0} | {'precision': 0.9482619054140469, 'recall': 0.9483688764980629, 'f1-score': 0.9482353578197027, 'support': 27619.0} |
|
116 |
+
| 0.0008 | 45.0 | 3645 | 0.4542 | {'precision': 0.8861480075901328, 'recall': 0.8954937679769894, 'f1-score': 0.8907963757749165, 'support': 1043.0} | {'precision': 0.9586123991069895, 'recall': 0.9651873198847263, 'f1-score': 0.9618886240271116, 'support': 17350.0} | {'precision': 0.9334872471416007, 'recall': 0.9203338391502276, 'f1-score': 0.9268638794891386, 'support': 9226.0} | 0.9476 | {'precision': 0.9260825512795744, 'recall': 0.9270049756706479, 'f1-score': 0.9265162930970557, 'support': 27619.0} | {'precision': 0.9474829225732714, 'recall': 0.9475723234005576, 'f1-score': 0.9475040515214316, 'support': 27619.0} |
|
117 |
+
| 0.0008 | 46.0 | 3726 | 0.4560 | {'precision': 0.882186616399623, 'recall': 0.8974113135186961, 'f1-score': 0.8897338403041826, 'support': 1043.0} | {'precision': 0.9587003775311749, 'recall': 0.9659942363112392, 'f1-score': 0.9623334864492421, 'support': 17350.0} | {'precision': 0.9353239312472454, 'recall': 0.9201170604812486, 'f1-score': 0.9276581794339416, 'support': 9226.0} | 0.9481 | {'precision': 0.9254036417260144, 'recall': 0.927840870103728, 'f1-score': 0.926575168729122, 'support': 27619.0} | {'precision': 0.9480021282724854, 'recall': 0.9480792208262429, 'f1-score': 0.9480087167815329, 'support': 27619.0} |
|
118 |
+
| 0.0008 | 47.0 | 3807 | 0.4668 | {'precision': 0.8813559322033898, 'recall': 0.8974113135186961, 'f1-score': 0.8893111638954868, 'support': 1043.0} | {'precision': 0.961000057607005, 'recall': 0.9614985590778098, 'f1-score': 0.9612492437120056, 'support': 17350.0} | {'precision': 0.9279191128506197, 'recall': 0.925102969867765, 'f1-score': 0.9265089014329135, 'support': 9226.0} | 0.9469 | {'precision': 0.9234250342203382, 'recall': 0.9280042808214236, 'f1-score': 0.9256897696801353, 'support': 27619.0} | {'precision': 0.9469418506075343, 'recall': 0.9469205981389623, 'f1-score': 0.9469277326103895, 'support': 27619.0} |
|
119 |
+
| 0.0008 | 48.0 | 3888 | 0.4643 | {'precision': 0.882186616399623, 'recall': 0.8974113135186961, 'f1-score': 0.8897338403041826, 'support': 1043.0} | {'precision': 0.9605293440736479, 'recall': 0.9621902017291066, 'f1-score': 0.961359055571552, 'support': 17350.0} | {'precision': 0.9289605578557419, 'recall': 0.9241274658573596, 'f1-score': 0.9265377091936535, 'support': 9226.0} | 0.9470 | {'precision': 0.9238921727763376, 'recall': 0.9279096603683875, 'f1-score': 0.9258768683564625, 'support': 27619.0} | {'precision': 0.9470254124826993, 'recall': 0.9470292190158949, 'f1-score': 0.947022300395537, 'support': 27619.0} |
|
120 |
+
| 0.0008 | 49.0 | 3969 | 0.4590 | {'precision': 0.8819641170915958, 'recall': 0.8954937679769894, 'f1-score': 0.8886774500475738, 'support': 1043.0} | {'precision': 0.958698516354471, 'recall': 0.9646109510086456, 'f1-score': 0.961645645990749, 'support': 17350.0} | {'precision': 0.9327694166758211, 'recall': 0.9203338391502276, 'f1-score': 0.9265099023405532, 'support': 9226.0} | 0.9472 | {'precision': 0.9244773500406293, 'recall': 0.9268128527119542, 'f1-score': 0.9256109994596254, 'support': 27619.0} | {'precision': 0.9471392328153709, 'recall': 0.9472102538107824, 'f1-score': 0.9471531517192171, 'support': 27619.0} |
|
121 |
+
| 0.0009 | 50.0 | 4050 | 0.4604 | {'precision': 0.8831908831908832, 'recall': 0.8916586768935763, 'f1-score': 0.8874045801526719, 'support': 1043.0} | {'precision': 0.9586151553364668, 'recall': 0.9639193083573487, 'f1-score': 0.9612599149327509, 'support': 17350.0} | {'precision': 0.93125, 'recall': 0.9205506178192066, 'f1-score': 0.9258693993241034, 'support': 9226.0} | 0.9467 | {'precision': 0.92435201284245, 'recall': 0.9253762010233771, 'f1-score': 0.924844631469842, 'support': 27619.0} | {'precision': 0.9466256394603638, 'recall': 0.9467033563850972, 'f1-score': 0.9466488134742982, 'support': 27619.0} |
|
122 |
|
123 |
|
124 |
### Framework versions
|