File size: 9,290 Bytes
49c7a0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: apache-2.0
base_model: allenai/longformer-base-4096
tags:
- generated_from_trainer
datasets:
- essays_su_g
metrics:
- accuracy
model-index:
- name: longformer-spans
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: essays_su_g
      type: essays_su_g
      config: spans
      split: train[80%:100%]
      args: spans
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9389550671639089
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# longformer-spans

This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2009
- B: {'precision': 0.8471337579617835, 'recall': 0.8926174496644296, 'f1-score': 0.8692810457516339, 'support': 1043.0}
- I: {'precision': 0.9459794744558475, 'recall': 0.9669164265129683, 'f1-score': 0.9563333713373617, 'support': 17350.0}
- O: {'precision': 0.9362622353744594, 'recall': 0.8916106655105137, 'f1-score': 0.9133910726182546, 'support': 9226.0}
- Accuracy: 0.9390
- Macro avg: {'precision': 0.9097918225973635, 'recall': 0.9170481805626371, 'f1-score': 0.9130018299024169, 'support': 27619.0}
- Weighted avg: {'precision': 0.9390006797830427, 'recall': 0.9389550671639089, 'f1-score': 0.9387012621528006, 'support': 27619.0}

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 9

### Training results

| Training Loss | Epoch | Step | Validation Loss | B                                                                                                                  | I                                                                                                                   | O                                                                                                                  | Accuracy | Macro avg                                                                                                           | Weighted avg                                                                                                        |
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
| No log        | 1.0   | 41   | 0.2937          | {'precision': 0.8082191780821918, 'recall': 0.3959731543624161, 'f1-score': 0.5315315315315315, 'support': 1043.0} | {'precision': 0.8851326600031398, 'recall': 0.9748703170028818, 'f1-score': 0.9278367481280343, 'support': 17350.0} | {'precision': 0.932616577072134, 'recall': 0.8085844352915673, 'f1-score': 0.8661828737300435, 'support': 9226.0}  | 0.8975   | {'precision': 0.8753228050524885, 'recall': 0.7264759688856217, 'f1-score': 0.7751837177965365, 'support': 27619.0} | {'precision': 0.8980898944155006, 'recall': 0.8974618921756762, 'f1-score': 0.8922755407669418, 'support': 27619.0} |
| No log        | 2.0   | 82   | 0.2221          | {'precision': 0.7776852622814321, 'recall': 0.8954937679769894, 'f1-score': 0.8324420677361853, 'support': 1043.0} | {'precision': 0.9200997398091935, 'recall': 0.978328530259366, 'f1-score': 0.948321135258953, 'support': 17350.0}   | {'precision': 0.9626097867001254, 'recall': 0.8315629742033384, 'f1-score': 0.8923005350081413, 'support': 9226.0} | 0.9262   | {'precision': 0.8867982629302503, 'recall': 0.9017950908132312, 'f1-score': 0.8910212460010932, 'support': 27619.0} | {'precision': 0.9289219054398928, 'recall': 0.926174010644846, 'f1-score': 0.9252316705665227, 'support': 27619.0}  |
| No log        | 3.0   | 123  | 0.1732          | {'precision': 0.8459409594095941, 'recall': 0.8791946308724832, 'f1-score': 0.8622472966619651, 'support': 1043.0} | {'precision': 0.963898493817031, 'recall': 0.9479538904899135, 'f1-score': 0.9558597041815592, 'support': 17350.0}  | {'precision': 0.9060388513513513, 'recall': 0.9301972685887708, 'f1-score': 0.9179591400149748, 'support': 9226.0} | 0.9394   | {'precision': 0.9052927681926587, 'recall': 0.9191152633170558, 'f1-score': 0.9120220469528331, 'support': 27619.0} | {'precision': 0.9401162145970984, 'recall': 0.9394257576306166, 'f1-score': 0.9396640292460493, 'support': 27619.0} |
| No log        | 4.0   | 164  | 0.1893          | {'precision': 0.8392523364485981, 'recall': 0.8609779482262704, 'f1-score': 0.8499763369616659, 'support': 1043.0} | {'precision': 0.9343029364596582, 'recall': 0.9737752161383285, 'f1-score': 0.9536307961504812, 'support': 17350.0} | {'precision': 0.946491849751949, 'recall': 0.8685237372642532, 'f1-score': 0.9058331449242596, 'support': 9226.0}  | 0.9344   | {'precision': 0.9066823742200686, 'recall': 0.9010923005429508, 'f1-score': 0.9031467593454688, 'support': 27619.0} | {'precision': 0.9347851095370013, 'recall': 0.9343567833737645, 'f1-score': 0.9337498181589879, 'support': 27619.0} |
| No log        | 5.0   | 205  | 0.1928          | {'precision': 0.8462946020128088, 'recall': 0.8868648130393096, 'f1-score': 0.8661048689138576, 'support': 1043.0} | {'precision': 0.9407601426660722, 'recall': 0.9729682997118155, 'f1-score': 0.9565931886439621, 'support': 17350.0} | {'precision': 0.9475646702400373, 'recall': 0.8814220680685021, 'f1-score': 0.91329739442947, 'support': 9226.0}   | 0.9391   | {'precision': 0.9115398049729727, 'recall': 0.9137517269398758, 'f1-score': 0.9119984839957632, 'support': 27619.0} | {'precision': 0.939465780542029, 'recall': 0.9391361019587965, 'f1-score': 0.9387132395183093, 'support': 27619.0}  |
| No log        | 6.0   | 246  | 0.1784          | {'precision': 0.8283712784588442, 'recall': 0.9069990412272292, 'f1-score': 0.8659038901601832, 'support': 1043.0} | {'precision': 0.9433644229688729, 'recall': 0.9677233429394813, 'f1-score': 0.9553886423125071, 'support': 17350.0} | {'precision': 0.9398548219840995, 'recall': 0.8841318014307392, 'f1-score': 0.9111421390672997, 'support': 9226.0} | 0.9375   | {'precision': 0.9038635078039389, 'recall': 0.9196180618658166, 'f1-score': 0.9108115571799966, 'support': 27619.0} | {'precision': 0.9378494720868902, 'recall': 0.9375067888048083, 'f1-score': 0.9372290117887677, 'support': 27619.0} |
| No log        | 7.0   | 287  | 0.1897          | {'precision': 0.8537037037037037, 'recall': 0.8839884947267498, 'f1-score': 0.8685821950070655, 'support': 1043.0} | {'precision': 0.9477176070314715, 'recall': 0.96328530259366, 'f1-score': 0.9554380448763755, 'support': 17350.0}   | {'precision': 0.9293575920934412, 'recall': 0.8969217429004986, 'f1-score': 0.9128516271373415, 'support': 9226.0} | 0.9381   | {'precision': 0.9102596342762054, 'recall': 0.9147318467403028, 'f1-score': 0.9122906223402608, 'support': 27619.0} | {'precision': 0.9380342007173714, 'recall': 0.9381223071074261, 'f1-score': 0.9379322357785074, 'support': 27619.0} |
| No log        | 8.0   | 328  | 0.1994          | {'precision': 0.8458029197080292, 'recall': 0.8887823585810163, 'f1-score': 0.8667601683029453, 'support': 1043.0} | {'precision': 0.941661062542031, 'recall': 0.9684726224783862, 'f1-score': 0.9548786725009946, 'support': 17350.0}  | {'precision': 0.938241732918539, 'recall': 0.8826143507478864, 'f1-score': 0.9095783300753979, 'support': 9226.0}  | 0.9368   | {'precision': 0.9085685717228663, 'recall': 0.9132897772690963, 'f1-score': 0.9104057236264459, 'support': 27619.0} | {'precision': 0.9368988778835639, 'recall': 0.9367826496252579, 'f1-score': 0.9364186066370198, 'support': 27619.0} |
| No log        | 9.0   | 369  | 0.2009          | {'precision': 0.8471337579617835, 'recall': 0.8926174496644296, 'f1-score': 0.8692810457516339, 'support': 1043.0} | {'precision': 0.9459794744558475, 'recall': 0.9669164265129683, 'f1-score': 0.9563333713373617, 'support': 17350.0} | {'precision': 0.9362622353744594, 'recall': 0.8916106655105137, 'f1-score': 0.9133910726182546, 'support': 9226.0} | 0.9390   | {'precision': 0.9097918225973635, 'recall': 0.9170481805626371, 'f1-score': 0.9130018299024169, 'support': 27619.0} | {'precision': 0.9390006797830427, 'recall': 0.9389550671639089, 'f1-score': 0.9387012621528006, 'support': 27619.0} |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2