TheBloke commited on
Commit
ee8b0ec
1 Parent(s): 07683e2

Update for Transformers GPTQ support

Browse files
README.md CHANGED
@@ -18,17 +18,20 @@ tags:
18
  ---
19
 
20
  <!-- header start -->
21
- <div style="width: 100%;">
22
- <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
 
23
  </div>
24
  <div style="display: flex; justify-content: space-between; width: 100%;">
25
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
26
- <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
27
  </div>
28
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
29
- <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
30
  </div>
31
  </div>
 
 
32
  <!-- header end -->
33
 
34
  # qCammel 13 - GPTQ
@@ -79,13 +82,13 @@ All GPTQ files are made with AutoGPTQ.
79
 
80
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
81
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
82
- | [main](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
83
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
84
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
85
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
86
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
87
- | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
88
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
89
  | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. |
90
 
91
  ## How to download from branches
@@ -202,6 +205,7 @@ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLa
202
  ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
203
 
204
  <!-- footer start -->
 
205
  ## Discord
206
 
207
  For further support, and discussions on these models and AI in general, join us at:
@@ -221,13 +225,15 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
221
  * Patreon: https://patreon.com/TheBlokeAI
222
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
223
 
224
- **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
225
 
226
- **Patreon special mentions**: Willem Michiel, Ajan Kanaga, Cory Kujawski, Alps Aficionado, Nikolai Manek, Jonathan Leane, Stanislav Ovsiannikov, Michael Levine, Luke Pendergrass, Sid, K, Gabriel Tamborski, Clay Pascal, Kalila, William Sang, Will Dee, Pieter, Nathan LeClaire, ya boyyy, David Flickinger, vamX, Derek Yates, Fen Risland, Jeffrey Morgan, webtim, Daniel P. Andersen, Chadd, Edmond Seymore, Pyrater, Olusegun Samson, Lone Striker, biorpg, alfie_i, Mano Prime, Chris Smitley, Dave, zynix, Trenton Dambrowitz, Johann-Peter Hartmann, Magnesian, Spencer Kim, John Detwiler, Iucharbius, Gabriel Puliatti, LangChain4j, Luke @flexchar, Vadim, Rishabh Srivastava, Preetika Verma, Ai Maven, Femi Adebogun, WelcomeToTheClub, Leonard Tan, Imad Khwaja, Steven Wood, Stefan Sabev, Sebastain Graf, usrbinkat, Dan Guido, Sam, Eugene Pentland, Mandus, transmissions 11, Slarti, Karl Bernard, Spiking Neurons AB, Artur Olbinski, Joseph William Delisle, ReadyPlayerEmma, Olakabola, Asp the Wyvern, Space Cruiser, Matthew Berman, Randy H, subjectnull, danny, John Villwock, Illia Dulskyi, Rainer Wilmers, theTransient, Pierre Kircher, Alexandros Triantafyllidis, Viktor Bowallius, terasurfer, Deep Realms, SuperWojo, senxiiz, Oscar Rangel, Alex, Stephen Murray, Talal Aujan, Raven Klaugh, Sean Connelly, Raymond Fosdick, Fred von Graf, chris gileta, Junyu Yang, Elle
227
 
228
 
229
  Thank you to all my generous patrons and donaters!
230
 
 
 
231
  <!-- footer end -->
232
 
233
  # Original model card: augtoma's qCammel 13
@@ -238,7 +244,7 @@ qCammel-13 is a fine-tuned version of Llama-2 13B model, trained on a distilled
238
  ## Model Details
239
  *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept their License before downloading this model .*
240
 
241
- The fine-tuning process applied to qCammel-13 involves a distilled dataset of 15,000 instructions and is trained with QLoRA,
242
 
243
 
244
  **Variations** The original Llama 2 has parameter sizes of 7B, 13B, and 70B. This is the fine-tuned version of the 13B model.
@@ -252,7 +258,7 @@ The fine-tuning process applied to qCammel-13 involves a distilled dataset of 15
252
  **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
253
  Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved
254
 
255
- **Research Papers**
256
  - [Clinical Camel: An Open-Source Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding](https://arxiv.org/abs/2305.12031)
257
  - [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/abs/2305.14314)
258
  - [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)
 
18
  ---
19
 
20
  <!-- header start -->
21
+ <!-- 200823 -->
22
+ <div style="width: auto; margin-left: auto; margin-right: auto">
23
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
24
  </div>
25
  <div style="display: flex; justify-content: space-between; width: 100%;">
26
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
27
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
28
  </div>
29
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
30
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
31
  </div>
32
  </div>
33
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
34
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
35
  <!-- header end -->
36
 
37
  # qCammel 13 - GPTQ
 
82
 
83
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
84
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
85
+ | [main](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
86
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
87
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
88
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
89
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
90
+ | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
91
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
92
  | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/qCammel-13-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. |
93
 
94
  ## How to download from branches
 
205
  ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
206
 
207
  <!-- footer start -->
208
+ <!-- 200823 -->
209
  ## Discord
210
 
211
  For further support, and discussions on these models and AI in general, join us at:
 
225
  * Patreon: https://patreon.com/TheBlokeAI
226
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
227
 
228
+ **Special thanks to**: Aemon Algiz.
229
 
230
+ **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
231
 
232
 
233
  Thank you to all my generous patrons and donaters!
234
 
235
+ And thank you again to a16z for their generous grant.
236
+
237
  <!-- footer end -->
238
 
239
  # Original model card: augtoma's qCammel 13
 
244
  ## Model Details
245
  *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept their License before downloading this model .*
246
 
247
+ The fine-tuning process applied to qCammel-13 involves a distilled dataset of 15,000 instructions and is trained with QLoRA,
248
 
249
 
250
  **Variations** The original Llama 2 has parameter sizes of 7B, 13B, and 70B. This is the fine-tuned version of the 13B model.
 
258
  **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
259
  Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved
260
 
261
+ **Research Papers**
262
  - [Clinical Camel: An Open-Source Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding](https://arxiv.org/abs/2305.12031)
263
  - [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/abs/2305.14314)
264
  - [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)
config.json CHANGED
@@ -1,27 +1,38 @@
1
  {
2
- "_name_or_path": "/workspace/qCammel-13",
3
- "architectures": [
4
- "LlamaForCausalLM"
5
- ],
6
- "bos_token_id": 1,
7
- "eos_token_id": 2,
8
- "hidden_act": "silu",
9
- "hidden_size": 5120,
10
- "initializer_range": 0.02,
11
- "intermediate_size": 13824,
12
- "max_length": 4096,
13
- "max_position_embeddings": 4096,
14
- "model_type": "llama",
15
- "num_attention_heads": 40,
16
- "num_hidden_layers": 40,
17
- "num_key_value_heads": 40,
18
- "pad_token_id": 0,
19
- "pretraining_tp": 1,
20
- "rms_norm_eps": 1e-05,
21
- "rope_scaling": null,
22
- "tie_word_embeddings": false,
23
- "torch_dtype": "float16",
24
- "transformers_version": "4.32.0.dev0",
25
- "use_cache": true,
26
- "vocab_size": 32000
 
 
 
 
 
 
 
 
 
 
 
27
  }
 
1
  {
2
+ "_name_or_path": "/workspace/qCammel-13",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 5120,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 13824,
12
+ "max_length": 4096,
13
+ "max_position_embeddings": 4096,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 40,
16
+ "num_hidden_layers": 40,
17
+ "num_key_value_heads": 40,
18
+ "pad_token_id": 0,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float16",
24
+ "transformers_version": "4.32.0.dev0",
25
+ "use_cache": true,
26
+ "vocab_size": 32000,
27
+ "quantization_config": {
28
+ "bits": 4,
29
+ "group_size": 128,
30
+ "damp_percent": 0.1,
31
+ "desc_act": false,
32
+ "sym": true,
33
+ "true_sequential": true,
34
+ "model_name_or_path": null,
35
+ "model_file_base_name": "model",
36
+ "quant_method": "gptq"
37
+ }
38
  }
gptq_model-4bit-128g.safetensors → model.safetensors RENAMED
File without changes
quantize_config.json CHANGED
@@ -6,5 +6,5 @@
6
  "sym": true,
7
  "true_sequential": true,
8
  "model_name_or_path": null,
9
- "model_file_base_name": null
10
  }
 
6
  "sym": true,
7
  "true_sequential": true,
8
  "model_name_or_path": null,
9
+ "model_file_base_name": "model"
10
  }