TheBloke commited on
Commit
5a454d9
1 Parent(s): 1cf9402

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +486 -0
README.md ADDED
@@ -0,0 +1,486 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/phi-2
3
+ inference: false
4
+ language:
5
+ - en
6
+ license: other
7
+ license_link: https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE
8
+ license_name: microsoft-research-license
9
+ model_creator: Microsoft
10
+ model_name: Phi 2
11
+ model_type: phi-msft
12
+ pipeline_tag: text-generation
13
+ prompt_template: 'Instruct: {prompt}
14
+
15
+ Output:
16
+
17
+ '
18
+ quantized_by: TheBloke
19
+ tags:
20
+ - nlp
21
+ - code
22
+ ---
23
+ <!-- markdownlint-disable MD041 -->
24
+
25
+ <!-- header start -->
26
+ <!-- 200823 -->
27
+ <div style="width: auto; margin-left: auto; margin-right: auto">
28
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
29
+ </div>
30
+ <div style="display: flex; justify-content: space-between; width: 100%;">
31
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
32
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
33
+ </div>
34
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
35
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
36
+ </div>
37
+ </div>
38
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
39
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
40
+ <!-- header end -->
41
+
42
+ # Phi 2 - GGUF
43
+ - Model creator: [Microsoft](https://huggingface.co/microsoft)
44
+ - Original model: [Phi 2](https://huggingface.co/microsoft/phi-2)
45
+
46
+ <!-- description start -->
47
+ ## Description
48
+
49
+ This repo contains GGUF format model files for [Microsoft's Phi 2](https://huggingface.co/microsoft/phi-2).
50
+
51
+ <!-- description end -->
52
+ <!-- README_GGUF.md-about-gguf start -->
53
+ ### About GGUF
54
+
55
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
56
+
57
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
58
+
59
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
60
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
61
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
62
+ * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
63
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
64
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
65
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
66
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
67
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
68
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
69
+
70
+ <!-- README_GGUF.md-about-gguf end -->
71
+ <!-- repositories-available start -->
72
+ ## Repositories available
73
+
74
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/phi-2-GPTQ)
75
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/phi-2-GGUF)
76
+ * [Microsoft's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/microsoft/phi-2)
77
+ <!-- repositories-available end -->
78
+
79
+ <!-- prompt-template start -->
80
+ ## Prompt template: Phi
81
+
82
+ ```
83
+ Instruct: {prompt}
84
+ Output:
85
+
86
+ ```
87
+
88
+ <!-- prompt-template end -->
89
+
90
+
91
+ <!-- compatibility_gguf start -->
92
+ ## Compatibility
93
+
94
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
95
+
96
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
97
+
98
+ ## Explanation of quantisation methods
99
+
100
+ <details>
101
+ <summary>Click to see details</summary>
102
+
103
+ The new methods available are:
104
+
105
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
106
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
107
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
108
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
109
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
110
+
111
+ Refer to the Provided Files table below to see what files use which methods, and how.
112
+ </details>
113
+ <!-- compatibility_gguf end -->
114
+
115
+ <!-- README_GGUF.md-provided-files start -->
116
+ ## Provided files
117
+
118
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
119
+ | ---- | ---- | ---- | ---- | ---- | ----- |
120
+ | [phi-2.Q2_K.gguf](https://huggingface.co/TheBloke/phi-2-GGUF/blob/main/phi-2.Q2_K.gguf) | Q2_K | 2 | 1.17 GB| 3.67 GB | smallest, significant quality loss - not recommended for most purposes |
121
+ | [phi-2.Q3_K_S.gguf](https://huggingface.co/TheBloke/phi-2-GGUF/blob/main/phi-2.Q3_K_S.gguf) | Q3_K_S | 3 | 1.25 GB| 3.75 GB | very small, high quality loss |
122
+ | [phi-2.Q3_K_M.gguf](https://huggingface.co/TheBloke/phi-2-GGUF/blob/main/phi-2.Q3_K_M.gguf) | Q3_K_M | 3 | 1.48 GB| 3.98 GB | very small, high quality loss |
123
+ | [phi-2.Q4_0.gguf](https://huggingface.co/TheBloke/phi-2-GGUF/blob/main/phi-2.Q4_0.gguf) | Q4_0 | 4 | 1.60 GB| 4.10 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
124
+ | [phi-2.Q3_K_L.gguf](https://huggingface.co/TheBloke/phi-2-GGUF/blob/main/phi-2.Q3_K_L.gguf) | Q3_K_L | 3 | 1.60 GB| 4.10 GB | small, substantial quality loss |
125
+ | [phi-2.Q4_K_S.gguf](https://huggingface.co/TheBloke/phi-2-GGUF/blob/main/phi-2.Q4_K_S.gguf) | Q4_K_S | 4 | 1.62 GB| 4.12 GB | small, greater quality loss |
126
+ | [phi-2.Q4_K_M.gguf](https://huggingface.co/TheBloke/phi-2-GGUF/blob/main/phi-2.Q4_K_M.gguf) | Q4_K_M | 4 | 1.79 GB| 4.29 GB | medium, balanced quality - recommended |
127
+ | [phi-2.Q5_0.gguf](https://huggingface.co/TheBloke/phi-2-GGUF/blob/main/phi-2.Q5_0.gguf) | Q5_0 | 5 | 1.93 GB| 4.43 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
128
+ | [phi-2.Q5_K_S.gguf](https://huggingface.co/TheBloke/phi-2-GGUF/blob/main/phi-2.Q5_K_S.gguf) | Q5_K_S | 5 | 1.93 GB| 4.43 GB | large, low quality loss - recommended |
129
+ | [phi-2.Q5_K_M.gguf](https://huggingface.co/TheBloke/phi-2-GGUF/blob/main/phi-2.Q5_K_M.gguf) | Q5_K_M | 5 | 2.07 GB| 4.57 GB | large, very low quality loss - recommended |
130
+ | [phi-2.Q6_K.gguf](https://huggingface.co/TheBloke/phi-2-GGUF/blob/main/phi-2.Q6_K.gguf) | Q6_K | 6 | 2.29 GB| 4.79 GB | very large, extremely low quality loss |
131
+ | [phi-2.Q8_0.gguf](https://huggingface.co/TheBloke/phi-2-GGUF/blob/main/phi-2.Q8_0.gguf) | Q8_0 | 8 | 2.96 GB| 5.46 GB | very large, extremely low quality loss - not recommended |
132
+
133
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
134
+
135
+
136
+
137
+ <!-- README_GGUF.md-provided-files end -->
138
+
139
+ <!-- README_GGUF.md-how-to-download start -->
140
+ ## How to download GGUF files
141
+
142
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
143
+
144
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
145
+
146
+ * LM Studio
147
+ * LoLLMS Web UI
148
+ * Faraday.dev
149
+
150
+ ### In `text-generation-webui`
151
+
152
+ Under Download Model, you can enter the model repo: TheBloke/phi-2-GGUF and below it, a specific filename to download, such as: phi-2.Q4_K_M.gguf.
153
+
154
+ Then click Download.
155
+
156
+ ### On the command line, including multiple files at once
157
+
158
+ I recommend using the `huggingface-hub` Python library:
159
+
160
+ ```shell
161
+ pip3 install huggingface-hub
162
+ ```
163
+
164
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
165
+
166
+ ```shell
167
+ huggingface-cli download TheBloke/phi-2-GGUF phi-2.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
168
+ ```
169
+
170
+ <details>
171
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
172
+
173
+ You can also download multiple files at once with a pattern:
174
+
175
+ ```shell
176
+ huggingface-cli download TheBloke/phi-2-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
177
+ ```
178
+
179
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
180
+
181
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
182
+
183
+ ```shell
184
+ pip3 install hf_transfer
185
+ ```
186
+
187
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
188
+
189
+ ```shell
190
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/phi-2-GGUF phi-2.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
191
+ ```
192
+
193
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
194
+ </details>
195
+ <!-- README_GGUF.md-how-to-download end -->
196
+
197
+ <!-- README_GGUF.md-how-to-run start -->
198
+ ## Example `llama.cpp` command
199
+
200
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
201
+
202
+ ```shell
203
+ ./main -ngl 35 -m phi-2.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Instruct: {prompt}\nOutput:"
204
+ ```
205
+
206
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
207
+
208
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
209
+
210
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
211
+
212
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
213
+
214
+ ## How to run in `text-generation-webui`
215
+
216
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
217
+
218
+ ## How to run from Python code
219
+
220
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
221
+
222
+ ### How to load this model in Python code, using llama-cpp-python
223
+
224
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
225
+
226
+ #### First install the package
227
+
228
+ Run one of the following commands, according to your system:
229
+
230
+ ```shell
231
+ # Base ctransformers with no GPU acceleration
232
+ pip install llama-cpp-python
233
+ # With NVidia CUDA acceleration
234
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
235
+ # Or with OpenBLAS acceleration
236
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
237
+ # Or with CLBLast acceleration
238
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
239
+ # Or with AMD ROCm GPU acceleration (Linux only)
240
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
241
+ # Or with Metal GPU acceleration for macOS systems only
242
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
243
+
244
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
245
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
246
+ pip install llama-cpp-python
247
+ ```
248
+
249
+ #### Simple llama-cpp-python example code
250
+
251
+ ```python
252
+ from llama_cpp import Llama
253
+
254
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
255
+ llm = Llama(
256
+ model_path="./phi-2.Q4_K_M.gguf", # Download the model file first
257
+ n_ctx=2048, # The max sequence length to use - note that longer sequence lengths require much more resources
258
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
259
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
260
+ )
261
+
262
+ # Simple inference example
263
+ output = llm(
264
+ "Instruct: {prompt}\nOutput:", # Prompt
265
+ max_tokens=512, # Generate up to 512 tokens
266
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
267
+ echo=True # Whether to echo the prompt
268
+ )
269
+
270
+ # Chat Completion API
271
+
272
+ llm = Llama(model_path="./phi-2.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
273
+ llm.create_chat_completion(
274
+ messages = [
275
+ {"role": "system", "content": "You are a story writing assistant."},
276
+ {
277
+ "role": "user",
278
+ "content": "Write a story about llamas."
279
+ }
280
+ ]
281
+ )
282
+ ```
283
+
284
+ ## How to use with LangChain
285
+
286
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
287
+
288
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
289
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
290
+
291
+ <!-- README_GGUF.md-how-to-run end -->
292
+
293
+ <!-- footer start -->
294
+ <!-- 200823 -->
295
+ ## Discord
296
+
297
+ For further support, and discussions on these models and AI in general, join us at:
298
+
299
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
300
+
301
+ ## Thanks, and how to contribute
302
+
303
+ Thanks to the [chirper.ai](https://chirper.ai) team!
304
+
305
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
306
+
307
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
308
+
309
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
310
+
311
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
312
+
313
+ * Patreon: https://patreon.com/TheBlokeAI
314
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
315
+
316
+ **Special thanks to**: Aemon Algiz.
317
+
318
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
319
+
320
+
321
+ Thank you to all my generous patrons and donaters!
322
+
323
+ And thank you again to a16z for their generous grant.
324
+
325
+ <!-- footer end -->
326
+
327
+ <!-- original-model-card start -->
328
+ # Original model card: Microsoft's Phi 2
329
+
330
+
331
+ ## Model Summary
332
+
333
+ Phi-2 is a Transformer with **2.7 billion** parameters. It was trained using the same data sources as [Phi-1.5](https://huggingface.co/microsoft/phi-1.5), augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.
334
+
335
+ Our model hasn't been fine-tuned through reinforcement learning from human feedback. The intention behind crafting this open-source model is to provide the research community with a non-restricted small model to explore vital safety challenges, such as reducing toxicity, understanding societal biases, enhancing controllability, and more.
336
+
337
+ ## Intended Uses
338
+
339
+ Phi-2 is intended for research purposes only. Given the nature of the training data, the Phi-2 model is best suited for prompts using the QA format, the chat format, and the code format.
340
+
341
+ ### QA Format:
342
+
343
+ You can provide the prompt as a standalone question as follows:
344
+
345
+ ```markdown
346
+ Write a detailed analogy between mathematics and a lighthouse.
347
+ ```
348
+ where the model generates the text after "." .
349
+ To encourage the model to write more concise answers, you can also try the following QA format using "Instruct: \<prompt\>\nOutput:"
350
+ ```markdown
351
+ Instruct: Write a detailed analogy between mathematics and a lighthouse.
352
+ Output: Mathematics is like a lighthouse. Just as a lighthouse guides ships safely to shore, mathematics provides a guiding light in the world of numbers and logic. It helps us navigate through complex problems and find solutions. Just as a lighthouse emits a steady beam of light, mathematics provides a consistent framework for reasoning and problem-solving. It illuminates the path to understanding and helps us make sense of the world around us.
353
+ ```
354
+ where the model generates the text after "Output:".
355
+
356
+ ### Chat Format:
357
+
358
+ ```markdown
359
+ Alice: I don't know why, I'm struggling to maintain focus while studying. Any suggestions?
360
+ Bob: Well, have you tried creating a study schedule and sticking to it?
361
+ Alice: Yes, I have, but it doesn't seem to help much.
362
+ Bob: Hmm, maybe you should try studying in a quiet environment, like the library.
363
+ Alice: ...
364
+ ```
365
+
366
+ where the model generates the text after the first "Bob:".
367
+
368
+ ### Code Format:
369
+
370
+ ```python
371
+ def print_prime(n):
372
+ """
373
+ Print all primes between 1 and n
374
+ """
375
+ primes = []
376
+ for num in range(2, n+1):
377
+ is_prime = True
378
+ for i in range(2, int(math.sqrt(num))+1):
379
+ if num % i == 0:
380
+ is_prime = False
381
+ break
382
+ if is_prime:
383
+ primes.append(num)
384
+ print(primes)
385
+ ```
386
+ where the model generates the text after the comments.
387
+
388
+ **Notes:**
389
+ * Phi-2 is intended for research purposes. The model-generated text/code should be treated as a starting point rather than a definitive solution for potential use cases. Users should be cautious when employing these models in their applications.
390
+ * Direct adoption for production tasks is out of the scope of this research project. As a result, the Phi-2 model has not been tested to ensure that it performs adequately for any production-level application. Please refer to the limitation sections of this document for more details.
391
+ * If you are using `transformers>=4.36.0`, always load the model with `trust_remote_code=True` to prevent side-effects.
392
+
393
+ ## Sample Code
394
+
395
+ There are four types of execution mode:
396
+
397
+ 1. FP16 / Flash-Attention / CUDA:
398
+ ```python
399
+ model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", flash_attn=True, flash_rotary=True, fused_dense=True, device_map="cuda", trust_remote_code=True)
400
+ ```
401
+ 2. FP16 / CUDA:
402
+ ```python
403
+ model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", device_map="cuda", trust_remote_code=True)
404
+ ```
405
+ 3. FP32 / CUDA:
406
+ ```python
407
+ model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype=torch.float32, device_map="cuda", trust_remote_code=True)
408
+ ```
409
+ 4. FP32 / CPU:
410
+ ```python
411
+ model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype=torch.float32, device_map="cpu", trust_remote_code=True)
412
+ ```
413
+
414
+ To ensure the maximum compatibility, we recommend using the second execution mode (FP16 / CUDA), as follows:
415
+
416
+ ```python
417
+ import torch
418
+ from transformers import AutoModelForCausalLM, AutoTokenizer
419
+
420
+ torch.set_default_device("cuda")
421
+
422
+ model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", trust_remote_code=True)
423
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
424
+
425
+ inputs = tokenizer('''def print_prime(n):
426
+ """
427
+ Print all primes between 1 and n
428
+ """''', return_tensors="pt", return_attention_mask=False)
429
+
430
+ outputs = model.generate(**inputs, max_length=200)
431
+ text = tokenizer.batch_decode(outputs)[0]
432
+ print(text)
433
+ ```
434
+
435
+ **Remark:** In the generation function, our model currently does not support beam search (`num_beams > 1`).
436
+ Furthermore, in the forward pass of the model, we currently do not support outputting hidden states or attention values, or using custom input embeddings.
437
+
438
+ ## Limitations of Phi-2
439
+
440
+ * Generate Inaccurate Code and Facts: The model may produce incorrect code snippets and statements. Users should treat these outputs as suggestions or starting points, not as definitive or accurate solutions.
441
+
442
+ * Limited Scope for code: Majority of Phi-2 training data is based in Python and use common packages such as "typing, math, random, collections, datetime, itertools". If the model generates Python scripts that utilize other packages or scripts in other languages, we strongly recommend users manually verify all API uses.
443
+
444
+ * Unreliable Responses to Instruction: The model has not undergone instruction fine-tuning. As a result, it may struggle or fail to adhere to intricate or nuanced instructions provided by users.
445
+
446
+ * Language Limitations: The model is primarily designed to understand standard English. Informal English, slang, or any other languages might pose challenges to its comprehension, leading to potential misinterpretations or errors in response.
447
+
448
+ * Potential Societal Biases: Phi-2 is not entirely free from societal biases despite efforts in assuring trainig data safety. There's a possibility it may generate content that mirrors these societal biases, particularly if prompted or instructed to do so. We urge users to be aware of this and to exercise caution and critical thinking when interpreting model outputs.
449
+
450
+ * Toxicity: Despite being trained with carefully selected data, the model can still produce harmful content if explicitly prompted or instructed to do so. We chose to release the model for research purposes only -- We hope to help the open-source community develop the most effective ways to reduce the toxicity of a model directly after pretraining.
451
+
452
+ * Verbosity: Phi-2 being a base model often produces irrelevant or extra text and responses following its first answer to user prompts within a single turn. This is due to its training dataset being primarily textbooks, which results in textbook-like responses.
453
+
454
+ ## Training
455
+
456
+ ### Model
457
+
458
+ * Architecture: a Transformer-based model with next-word prediction objective
459
+
460
+ * Context length: 2048 tokens
461
+
462
+ * Dataset size: 250B tokens, combination of NLP synthetic data created by AOAI GPT-3.5 and filtered web data from Falcon RefinedWeb and SlimPajama, which was assessed by AOAI GPT-4.
463
+
464
+ * Training tokens: 1.4T tokens
465
+
466
+ * GPUs: 96xA100-80G
467
+
468
+ * Training time: 14 days
469
+
470
+ ### Software
471
+
472
+ * [PyTorch](https://github.com/pytorch/pytorch)
473
+
474
+ * [DeepSpeed](https://github.com/microsoft/DeepSpeed)
475
+
476
+ * [Flash-Attention](https://github.com/HazyResearch/flash-attention)
477
+
478
+ ### License
479
+
480
+ The model is licensed under the [microsoft-research-license](https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE).
481
+
482
+ ## Trademarks
483
+
484
+ This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft’s Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party’s policies.
485
+
486
+ <!-- original-model-card end -->