Text Generation
Transformers
GGUF
mistral
openchat
C-RLFT
conversational
File size: 36,702 Bytes
b18b28a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fcde88
b18b28a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fcde88
b18b28a
 
5fcde88
b18b28a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fcde88
b18b28a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fcde88
b18b28a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eedfe1
 
b18b28a
 
5eedfe1
b18b28a
 
 
 
 
 
 
 
 
 
5eedfe1
 
 
 
 
 
 
 
b18b28a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
---
base_model: openchat/openchat-3.5-1210
datasets:
- openchat/openchat_sharegpt4_dataset
- kaist-ai/Feedback-Collection
- imone/OpenOrca_FLAN
- LDJnr/LessWrong-Amplify-Instruct
- LDJnr/Pure-Dove
- LDJnr/Verified-Camel
- tiedong/goat
- glaiveai/glaive-code-assistant
- meta-math/MetaMathQA
- OpenAssistant/oasst_top1_2023-08-25
- TIGER-Lab/MathInstruct
inference: false
library_name: transformers
license: apache-2.0
model_creator: OpenChat
model_name: Openchat 3.5 1210
model_type: mistral
pipeline_tag: text-generation
prompt_template: 'GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant:

  '
quantized_by: TheBloke
tags:
- openchat
- mistral
- C-RLFT
---
<!-- markdownlint-disable MD041 -->

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# Openchat 3.5 1210 - GGUF
- Model creator: [OpenChat](https://huggingface.co/openchat)
- Original model: [Openchat 3.5 1210](https://huggingface.co/openchat/openchat-3.5-1210)

<!-- description start -->
## Description

This repo contains GGUF format model files for [OpenChat's Openchat 3.5 1210](https://huggingface.co/openchat/openchat-3.5-1210).

These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).

<!-- description end -->
<!-- README_GGUF.md-about-gguf start -->
### About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

Here is an incomplete list of clients and libraries that are known to support GGUF:

* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.

<!-- README_GGUF.md-about-gguf end -->
<!-- repositories-available start -->
## Repositories available

* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/openchat-3.5-1210-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/openchat-3.5-1210-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/openchat-3.5-1210-GGUF)
* [OpenChat's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/openchat/openchat-3.5-1210)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: OpenChat-Correct

```
GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant:

```

<!-- prompt-template end -->


<!-- compatibility_gguf start -->
## Compatibility

These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)

They are also compatible with many third party UIs and libraries - please see the list at the top of this README.

## Explanation of quantisation methods

<details>
  <summary>Click to see details</summary>

The new methods available are:

* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw

Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->

<!-- README_GGUF.md-provided-files start -->
## Provided files

| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [openchat-3.5-1210.Q2_K.gguf](https://huggingface.co/TheBloke/openchat-3.5-1210-GGUF/blob/main/openchat-3.5-1210.Q2_K.gguf) | Q2_K | 2 | 3.08 GB| 5.58 GB | smallest, significant quality loss - not recommended for most purposes |
| [openchat-3.5-1210.Q3_K_S.gguf](https://huggingface.co/TheBloke/openchat-3.5-1210-GGUF/blob/main/openchat-3.5-1210.Q3_K_S.gguf) | Q3_K_S | 3 | 3.16 GB| 5.66 GB | very small, high quality loss |
| [openchat-3.5-1210.Q3_K_M.gguf](https://huggingface.co/TheBloke/openchat-3.5-1210-GGUF/blob/main/openchat-3.5-1210.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss |
| [openchat-3.5-1210.Q3_K_L.gguf](https://huggingface.co/TheBloke/openchat-3.5-1210-GGUF/blob/main/openchat-3.5-1210.Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss |
| [openchat-3.5-1210.Q4_0.gguf](https://huggingface.co/TheBloke/openchat-3.5-1210-GGUF/blob/main/openchat-3.5-1210.Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [openchat-3.5-1210.Q4_K_S.gguf](https://huggingface.co/TheBloke/openchat-3.5-1210-GGUF/blob/main/openchat-3.5-1210.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss |
| [openchat-3.5-1210.Q4_K_M.gguf](https://huggingface.co/TheBloke/openchat-3.5-1210-GGUF/blob/main/openchat-3.5-1210.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended |
| [openchat-3.5-1210.Q5_0.gguf](https://huggingface.co/TheBloke/openchat-3.5-1210-GGUF/blob/main/openchat-3.5-1210.Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [openchat-3.5-1210.Q5_K_S.gguf](https://huggingface.co/TheBloke/openchat-3.5-1210-GGUF/blob/main/openchat-3.5-1210.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended |
| [openchat-3.5-1210.Q5_K_M.gguf](https://huggingface.co/TheBloke/openchat-3.5-1210-GGUF/blob/main/openchat-3.5-1210.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended |
| [openchat-3.5-1210.Q6_K.gguf](https://huggingface.co/TheBloke/openchat-3.5-1210-GGUF/blob/main/openchat-3.5-1210.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss |
| [openchat-3.5-1210.Q8_0.gguf](https://huggingface.co/TheBloke/openchat-3.5-1210-GGUF/blob/main/openchat-3.5-1210.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended |

**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.



<!-- README_GGUF.md-provided-files end -->

<!-- README_GGUF.md-how-to-download start -->
## How to download GGUF files

**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.

The following clients/libraries will automatically download models for you, providing a list of available models to choose from:

* LM Studio
* LoLLMS Web UI
* Faraday.dev

### In `text-generation-webui`

Under Download Model, you can enter the model repo: TheBloke/openchat-3.5-1210-GGUF and below it, a specific filename to download, such as: openchat-3.5-1210.Q4_K_M.gguf.

Then click Download.

### On the command line, including multiple files at once

I recommend using the `huggingface-hub` Python library:

```shell
pip3 install huggingface-hub
```

Then you can download any individual model file to the current directory, at high speed, with a command like this:

```shell
huggingface-cli download TheBloke/openchat-3.5-1210-GGUF openchat-3.5-1210.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```

<details>
  <summary>More advanced huggingface-cli download usage (click to read)</summary>

You can also download multiple files at once with a pattern:

```shell
huggingface-cli download TheBloke/openchat-3.5-1210-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
```

For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).

To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:

```shell
pip3 install hf_transfer
```

And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:

```shell
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/openchat-3.5-1210-GGUF openchat-3.5-1210.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```

Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
<!-- README_GGUF.md-how-to-download end -->

<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command

Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.

```shell
./main -ngl 35 -m openchat-3.5-1210.Q4_K_M.gguf --color -c 8192 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant:"
```

Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change `-c 8192` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.

If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`

For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)

## How to run in `text-generation-webui`

Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).

## How to run from Python code

You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.

### How to load this model in Python code, using llama-cpp-python

For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).

#### First install the package

Run one of the following commands, according to your system:

```shell
# Base ctransformers with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with CLBLast acceleration
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python

# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
pip install llama-cpp-python
```

#### Simple llama-cpp-python example code

```python
from llama_cpp import Llama

# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = Llama(
  model_path="./openchat-3.5-1210.Q4_K_M.gguf",  # Download the model file first
  n_ctx=8192,  # The max sequence length to use - note that longer sequence lengths require much more resources
  n_threads=8,            # The number of CPU threads to use, tailor to your system and the resulting performance
  n_gpu_layers=35         # The number of layers to offload to GPU, if you have GPU acceleration available
)

# Simple inference example
output = llm(
  "GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant:", # Prompt
  max_tokens=512,  # Generate up to 512 tokens
  stop=["</s>"],   # Example stop token - not necessarily correct for this specific model! Please check before using.
  echo=True        # Whether to echo the prompt
)

# Chat Completion API

llm = Llama(model_path="./openchat-3.5-1210.Q4_K_M.gguf", chat_format="llama-2")  # Set chat_format according to the model you are using
llm.create_chat_completion(
    messages = [
        {"role": "system", "content": "You are a story writing assistant."},
        {
            "role": "user",
            "content": "Write a story about llamas."
        }
    ]
)
```

## How to use with LangChain

Here are guides on using llama-cpp-python and ctransformers with LangChain:

* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)

<!-- README_GGUF.md-how-to-run end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute

Thanks to the [chirper.ai](https://chirper.ai) team!

Thanks to Clay from [gpus.llm-utils.org](llm-utils)!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

<!-- original-model-card start -->
# Original model card: OpenChat's Openchat 3.5 1210

<div align="center">
  <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 65%">
  <h1>Advancing Open-source Language Models with Mixed-Quality Data</h1>
</div>

<p align="center" style="margin-top: 0px;">
  <a href="https://openchat.team">
    <img src="https://github.com/alpayariyak/openchat/blob/master/assets/logo_nobg.png?raw=true" alt="OpenChat Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 10px; margin-top: 0px; margin-bottom: 0px;"/>
    <span class="link-text" style=" margin-right: 5px;">Online Demo</span>
  </a> |
  <a href="https://github.com/imoneoi/openchat">
    <img src="https://camo.githubusercontent.com/4133dc1cd4511d4a292b84ce10e52e4ed92569fb2a8165381c9c47be5edc2796/68747470733a2f2f6564656e742e6769746875622e696f2f537570657254696e7949636f6e732f696d616765732f706e672f6769746875622e706e67" alt="GitHub Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
    <span class="link-text" style=" margin-right: 5px;">GitHub</span>
  </a> |
  <a href="https://arxiv.org/pdf/2309.11235.pdf">
    <img src="https://github.com/alpayariyak/openchat/blob/master/assets/arxiv-logomark-small-square-border.png?raw=true" alt="ArXiv Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
    <span class="link-text" style="margin-right: 5px;">Paper</span>
  </a> |
  <a href="https://discord.gg/pQjnXvNKHY">
    <img src="https://cloud.githubusercontent.com/assets/6291467/26705903/96c2d66e-477c-11e7-9f4e-f3c0efe96c9a.png" alt="Discord Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
    <span class="link-text">Discord</span>
  </a>
</p>

<hr>
<div style="background-color: white; padding: 0.7em; border-radius: 0.5em; color: black; display: flex; flex-direction: column; justify-content: center; text-align: center; ont-size: 0.5em;">
  <a href="https://huggingface.co/openchat/openchat_3.5" style="text-decoration: none; color: black;">
    <span style="font-size: 1.7em; font-family: 'Helvetica'; letter-spacing: 0.1em; font-weight: bold; color: black;">OPENCHAT</span><span style="font-size: 1.8em; font-family: 'Helvetica'; color: #3c72db; ">3.5</span>
        <span style="font-size: 0.7em;  font-family: 'Helvetica'; color:  white; vertical-align: top;  background-color:red;  border-radius: 6em; padding: 0.066em 0.4em; letter-spacing: 0.1em; font-weight: bold;">1210</span>
    <span style="font-size: 0.85em; font-family: 'Helvetica'; color: black;">
      <br> 🏆 The Overall Best Performing Open Source 7B Model 🏆
    <br> 🤖 Outperforms <span style="font-weight: bold;">ChatGPT</span> (March) and <span style="font-weight: bold;">Grok-1</span> 🤖
      <br> 🚀<span style="font-size: 1em; font-family: 'Helvetica'; color: black; font-weight: bold;">15</span>-point improvement in Coding over <span style="font-size: 0.9em;
      font-family: 'Helvetica'; color: black; font-weight: bold;">OpenChat-3.5🚀</span>
      <br><br><span style="font-size: 1em; font-family: 'Helvetica'; color: #3c72db; font-weight: bold;">New Features</span>
      <br> 💡 2 Modes: Coding + Generalist, Mathematical Reasoning 💡
      <br> 🧑‍⚖️ Experimental support for Evaluator and Feedback capabilities 🧑‍⚖️
    </span>
  </a>
</div>

<div style="display: flex; justify-content: center; align-items: center">
  <img src="https://github.com/alpayariyak/openchat/blob/master/assets/1210bench.png?raw=true" style="width: 100%; border-radius: 1em">
</div>

<div>
<h3> Table of Contents</h3>
</div>

1. [Usage](#usage)
2. [Benchmarks](#benchmarks)
3. [Limitations](#limitations)
4. [License](#license)
5. [Dataset Details](#dataset-details)
6. [Citation](#citation)
7. [Acknowledgements](#acknowledgements)


<div align="center">
<h2> Usage </h2>
</div>

To use this model, we highly recommend installing the OpenChat package by following the [installation guide](https://github.com/imoneoi/openchat#installation) in our repository and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using [vLLM](https://github.com/vllm-project/vllm) and can run on a consumer GPU with 24GB RAM. To enable tensor parallelism, append `--tensor-parallel-size N` to the serving command.

Once started, the server listens at `localhost:18888` for requests and is compatible with the [OpenAI ChatCompletion API specifications](https://platform.openai.com/docs/api-reference/chat). Please refer to the example request below for reference. Additionally, you can use the [OpenChat Web UI](https://github.com/imoneoi/openchat#web-ui) for a user-friendly experience.

If you want to deploy the server as an online service, you can use `--api-keys sk-KEY1 sk-KEY2 ...` to specify allowed API keys and `--disable-log-requests --disable-log-stats --log-file openchat.log` for logging only to a file. For security purposes, we recommend using an [HTTPS gateway](https://fastapi.tiangolo.com/es/deployment/concepts/#security-https) in front of the server.

| Model             | Size | Context | Weights                                                          | Serving                                                                                                          |
|-------------------|------|---------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| OpenChat 3.5 1210 | 7B   | 8192    | [Huggingface](https://huggingface.co/openchat/openchat_3.5_1210) | `python -m ochat.serving.openai_api_server --model openchat/openchat_3.5_1210 --engine-use-ray --worker-use-ray` |

<details>
  <summary>Example request (click to expand)</summary>

💡 **Default Mode (GPT4 Correct)**: Best for coding, chat and general tasks

```bash
curl http://localhost:18888/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "openchat_3.5",
    "messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}]
  }'
```

🧮 **Mathematical Reasoning Mode**: Tailored for solving math problems

```bash
curl http://localhost:18888/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "openchat_3.5",
    "condition": "Math Correct",
    "messages": [{"role": "user", "content": "10.3 − 7988.8133 = "}]
  }'
```

</details>

### Conversation templates

💡 **Default Mode (GPT4 Correct)**: Best for coding, chat and general tasks

```
GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:
```

🧮 **Mathematical Reasoning Mode**: Tailored for solving math problems

```
Math Correct User: 10.3 − 7988.8133=<|end_of_turn|>Math Correct Assistant:
```

⚠️ **Notice:** Remember to set `<|end_of_turn|>` as end of generation token.

The default (GPT4 Correct) template is also available as the integrated `tokenizer.chat_template`,
which can be used instead of manually specifying the template:

```python
messages = [
    {"role": "user", "content": "Hello"},
    {"role": "assistant", "content": "Hi"},
    {"role": "user", "content": "How are you today?"}
]
tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
```

<div align="center">
<h2> (Experimental) Evaluator / Feedback Capabilities </h2>
</div>
We've included evaluator capabilities in this release to advance open-source models as evaluators. You can use `Default Mode (GPT4 Correct)` with the following prompt (same as [Prometheus](https://huggingface.co/datasets/kaist-ai/Feedback-Collection)) to evaluate a response.

```
###Task Description:
An instruction (might include an Input inside it), a response to evaluate, a reference answer that gets a score of 5, and a score rubric representing a evaluation criteria are given.
1. Write a detailed feedback that assess the quality of the response strictly based on the given score rubric, not evaluating in general.
2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric.
3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)"
4. Please do not generate any other opening, closing, and explanations.

###The instruction to evaluate:
{orig_instruction}

###Response to evaluate:
{orig_response}

###Reference Answer (Score 5):
{orig_reference_answer}

###Score Rubrics:
[{orig_criteria}]
Score 1: {orig_score1_description}
Score 2: {orig_score2_description}
Score 3: {orig_score3_description}
Score 4: {orig_score4_description}
Score 5: {orig_score5_description}

###Feedback:
```
<div align="center">
<h2> Benchmarks </h2>
</div>

| Model              | # Params | Average  | MT-Bench     | HumanEval       | BBH MC   | AGIEval  | TruthfulQA    | MMLU         | GSM8K        | BBH CoT     |
|--------------------|----------|----------|--------------|-----------------|----------|----------|---------------|--------------|--------------|-------------|
| OpenChat-3.5-1210  | **7B**   | **63.8** | 7.76         | **68.9**        | **49.5** | **48.0** | **61.8**      | 65.3         | **77.3**     | 61.8        |
| OpenChat-3.5       | **7B**   | 61.6     | 7.81         | 55.5            | 47.6     | 47.4     | 59.1          | 64.3         | **77.3**     | 63.5        |
| ChatGPT (March)*   | ?        | 61.5     | **7.94**     | 48.1            | 47.6     | 47.1     | 57.7          | **67.3**     | 74.9         | **70.1**    |
|                    |          |          |              |                 |          |          |               |              |              |             |
| OpenHermes 2.5     | 7B       | 59.3     | 7.54         | 48.2            | 49.4     | 46.5     | 57.5          | 63.8         | 73.5         | 59.9        |
| OpenOrca Mistral   | 7B       | 52.7     | 6.86         | 38.4            | 49.4     | 42.9     | 45.9          | 59.3         | 59.1         | 58.1        |
| Zephyr-β^          | 7B       | 34.6     | 7.34         | 22.0            | 40.6     | 39.0     | 40.8          | 39.8         | 5.1          | 16.0        |
| Mistral            | 7B       | -        | 6.84         | 30.5            | 39.0     | 38.0     | -             | 60.1         | 52.2         | -           |

<details>
  <summary>Evaluation Details(click to expand)</summary>
*: ChatGPT (March) results are from [GPT-4 Technical Report](https://arxiv.org/abs/2303.08774), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), and our evaluation. Please note that ChatGPT is not a fixed baseline and evolves rapidly over time.

^: Zephyr-β often fails to follow few-shot CoT instructions, likely because it was aligned with only chat data but not trained on few-shot data.

**: Mistral and Open-source SOTA results are taken from reported results in instruction-tuned model papers and official repositories.

All models are evaluated in chat mode (e.g. with the respective conversation template applied). All zero-shot benchmarks follow the same setting as in the AGIEval paper and Orca paper. CoT tasks use the same configuration as Chain-of-Thought Hub, HumanEval is evaluated with EvalPlus, and MT-bench is run using FastChat. To reproduce our results, follow the instructions in [our repository](https://github.com/imoneoi/openchat/#benchmarks).
</details>
<div>
<h3>HumanEval+</h3>
</div>

| Model                       | Size     | HumanEval+ pass@1 |
|-----------------------------|----------|------------|
| ChatGPT (December 12, 2023) | -        | 64.6       |
| WizardCoder-Python-34B-V1.0 | 34B      | 64.6       |
| **OpenChat 3.5 (Dec 10)**   | **7B**   | **63.4**   |
| OpenHermes 2.5              | 7B       | 41.5       |

<div>
<h3>OpenChat-3.5-1210 vs. Grok</h3>
</div>

|                   | License     | # Param | Average  | MMLU | HumanEval | MATH     | GSM8k    |
|-------------------|-------------|---------|----------|------|-----------|----------|----------|
| OpenChat 3.5 1210 | Apache-2.0  | **7B**  | **60.1** | 65.3 | **68.9**  | **28.9** | **77.3** |
| OpenChat 3.5      | Apache-2.0  | **7B**  | 56.4     | 64.3 | 55.5      | 28.6     | **77.3** |
| Grok-0            | Proprietary | 33B     | 44.5     | 65.7 | 39.7      | 15.7     | 56.8     |
| Grok-1            | Proprietary | ???B    | 55.8     | 73   | 63.2      | 23.9     | 62.9     |

*: Grok results are reported by [X.AI](https://x.ai/).

<div align="center">
<h2> 中文评估结果 / Chinese Evaluations </h2>
</div>

⚠️ Note that this model was not explicitly trained in Chinese (only < 0.1% of the data is in Chinese). 请注意本模型没有针对性训练中文(中文数据占比小于0.1%)。

<div>
<h3>Multi-Level Multi-Discipline Chinese Evaluation Suite (CEVAL)</h3>
<div>

| Model    | Avg   | STEM  | Social Science | Humanities | Others |
|----------|-------|-------|----------------|------------|--------|
| ChatGPT  | 54.4  | 52.9  | 61.8           | 50.9       | 53.6   |
| OpenChat | 47.29 | 45.22 | 52.49          | 48.52      | 45.08  |

<div>
<h3>Massive Multitask Language Understanding in Chinese (CMMLU, 5-shot)</h3>
</div>

| Models   | STEM  | Humanities | SocialSciences | Other | ChinaSpecific | Avg   |
|----------|-------|------------|----------------|-------|---------------|-------|
| ChatGPT  | 47.81 | 55.68      | 56.5           | 62.66 | 50.69         | 55.51 |
| OpenChat | 38.7  | 45.99      | 48.32          | 50.23 | 43.27         | 45.85 |

<div align="center">
<h2> Limitations </h2>
</div>

**Foundation Model Limitations**
Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as:

- Complex reasoning
- Mathematical and arithmetic tasks
- Programming and coding challenges

**Hallucination of Non-existent Information**
OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model.

**Safety**
OpenChat may sometimes generate harmful, hate speech, biased responses, or answer unsafe questions. It's crucial to apply additional AI safety measures in use cases that require safe and moderated responses.

<div align="center">
<h2> License </h2>
</div>

Our OpenChat 3.5 code and models are distributed under the Apache License 2.0.

<div align="center">
<h2> Dataset Details </h2>
</div>

OpenChat 3.5 was trained with C-RLFT on a collection of publicly available high-quality instruction data, with a custom processing pipeline. We detail some notable subsets included here:

- [OpenChat ShareGPT](https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset)
- [Open-Orca with FLAN answers](https://huggingface.co/datasets/imone/OpenOrca_FLAN)
- [Feedback-Collection](https://huggingface.co/datasets/kaist-ai/Feedback-Collection)
- Capybara [1](https://huggingface.co/datasets/LDJnr/Pure-Dove) [2](https://huggingface.co/datasets/LDJnr/Verified-Camel) [3](https://huggingface.co/datasets/LDJnr/LessWrong-Amplify-Instruct)
- [GOAT](https://huggingface.co/datasets/tiedong/goat)
- [Glaive](https://huggingface.co/datasets/glaiveai/glaive-code-assistant)
- [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)
- [MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
- [OpenAssistant](https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25)

<div align="center">
<h2> Citation </h2>
</div>

```
@article{wang2023openchat,
  title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data},
  author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang},
  journal={arXiv preprint arXiv:2309.11235},
  year={2023}
}
```

<div align="center">
<h2> Acknowledgments </h2>
</div>

We extend our heartfelt gratitude to AutoMeta and caesus from Alignment Lab AI, LDJ and Teknium from Nous Research, alpin and TearGosling from Pygmalion AI for their substantial contributions to data collection and model training.

Special thanks go to Changling Liu from GPT Desk Pte. Ltd., Qiying Yu at Tsinghua University, Baochang Ma, and Hao Wan from 01.AI company for their generous provision of resources. We are also deeply grateful to Jianxiong Li and Peng Li at Tsinghua University for their insightful discussions.

Furthermore, we appreciate the developers behind the following projects for their significant contributions to our research: [Mistral](https://mistral.ai/), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), [Llama 2](https://ai.meta.com/llama/), [Self-Instruct](https://arxiv.org/abs/2212.10560), [FastChat (Vicuna)](https://github.com/lm-sys/FastChat), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca.git), and [StarCoder](https://github.com/bigcode-project/starcoder). Their work has been instrumental in driving our research forward.

<!-- original-model-card end -->