TheBloke commited on
Commit
99af586
1 Parent(s): 045e707

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +565 -0
README.md ADDED
@@ -0,0 +1,565 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: tokyotech-llm/Swallow-7b-instruct-hf
3
+ inference: false
4
+ language:
5
+ - en
6
+ - ja
7
+ library_name: transformers
8
+ license: llama2
9
+ model_creator: tokyotech-llm
10
+ model_name: Swallow 7B Instruct
11
+ model_type: llama
12
+ pipeline_tag: text-generation
13
+ prompt_template: "\u4EE5\u4E0B\u306B\u3001\u3042\u308B\u30BF\u30B9\u30AF\u3092\u8AAC\
14
+ \u660E\u3059\u308B\u6307\u793A\u304C\u3042\u308A\u307E\u3059\u3002\u30EA\u30AF\u30A8\
15
+ \u30B9\u30C8\u3092\u9069\u5207\u306B\u5B8C\u4E86\u3059\u308B\u305F\u3081\u306E\u56DE\
16
+ \u7B54\u3092\u8A18\u8FF0\u3057\u3066\u304F\u3060\u3055\u3044\u3002\\n\\n### \u6307\
17
+ \u793A:\\n{prompt}\\n\\n### \u5FDC\u7B54:\n"
18
+ quantized_by: TheBloke
19
+ ---
20
+ <!-- markdownlint-disable MD041 -->
21
+
22
+ <!-- header start -->
23
+ <!-- 200823 -->
24
+ <div style="width: auto; margin-left: auto; margin-right: auto">
25
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
26
+ </div>
27
+ <div style="display: flex; justify-content: space-between; width: 100%;">
28
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
29
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
30
+ </div>
31
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
32
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
33
+ </div>
34
+ </div>
35
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
36
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
37
+ <!-- header end -->
38
+
39
+ # Swallow 7B Instruct - GPTQ
40
+ - Model creator: [tokyotech-llm](https://huggingface.co/tokyotech-llm)
41
+ - Original model: [Swallow 7B Instruct](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-hf)
42
+
43
+ <!-- description start -->
44
+ # Description
45
+
46
+ This repo contains GPTQ model files for [tokyotech-llm's Swallow 7B Instruct](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-hf).
47
+
48
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
49
+
50
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
51
+
52
+ <!-- description end -->
53
+ <!-- repositories-available start -->
54
+ ## Repositories available
55
+
56
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Swallow-7B-Instruct-AWQ)
57
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Swallow-7B-Instruct-GPTQ)
58
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Swallow-7B-Instruct-GGUF)
59
+ * [tokyotech-llm's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-hf)
60
+ <!-- repositories-available end -->
61
+
62
+ <!-- prompt-template start -->
63
+ ## Prompt template: Swallow-Instruct
64
+
65
+ ```
66
+ 以下に、あるタスクを説明する指示があります。リクエストを適切に完了するための回答を記述してください。\n\n### 指示:\n{prompt}\n\n### 応答:
67
+
68
+ ```
69
+
70
+ <!-- prompt-template end -->
71
+
72
+
73
+
74
+ <!-- README_GPTQ.md-compatible clients start -->
75
+ ## Known compatible clients / servers
76
+
77
+ GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
78
+
79
+ These GPTQ models are known to work in the following inference servers/webuis.
80
+
81
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
82
+ - [KoboldAI United](https://github.com/henk717/koboldai)
83
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
84
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
85
+
86
+ This may not be a complete list; if you know of others, please let me know!
87
+ <!-- README_GPTQ.md-compatible clients end -->
88
+
89
+ <!-- README_GPTQ.md-provided-files start -->
90
+ ## Provided files, and GPTQ parameters
91
+
92
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
93
+
94
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
95
+
96
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
97
+
98
+ <details>
99
+ <summary>Explanation of GPTQ parameters</summary>
100
+
101
+ - Bits: The bit size of the quantised model.
102
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
103
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
104
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
105
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
106
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
107
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
108
+
109
+ </details>
110
+
111
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
112
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
113
+ | [main](https://huggingface.co/TheBloke/Swallow-7B-Instruct-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [Alpaca Japanese](https://huggingface.co/datasets/fujiki/japanese_alpaca_data/viewer/) | 4096 | 4.08 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
114
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Swallow-7B-Instruct-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Alpaca Japanese](https://huggingface.co/datasets/fujiki/japanese_alpaca_data/viewer/) | 4096 | 4.46 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
115
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Swallow-7B-Instruct-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Alpaca Japanese](https://huggingface.co/datasets/fujiki/japanese_alpaca_data/viewer/) | 4096 | 7.20 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
116
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Swallow-7B-Instruct-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Alpaca Japanese](https://huggingface.co/datasets/fujiki/japanese_alpaca_data/viewer/) | 4096 | 7.34 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
117
+ | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/Swallow-7B-Instruct-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [Alpaca Japanese](https://huggingface.co/datasets/fujiki/japanese_alpaca_data/viewer/) | 4096 | 7.80 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
118
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Swallow-7B-Instruct-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Alpaca Japanese](https://huggingface.co/datasets/fujiki/japanese_alpaca_data/viewer/) | 4096 | 4.21 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
119
+
120
+ <!-- README_GPTQ.md-provided-files end -->
121
+
122
+ <!-- README_GPTQ.md-download-from-branches start -->
123
+ ## How to download, including from branches
124
+
125
+ ### In text-generation-webui
126
+
127
+ To download from the `main` branch, enter `TheBloke/Swallow-7B-Instruct-GPTQ` in the "Download model" box.
128
+
129
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/Swallow-7B-Instruct-GPTQ:gptq-4bit-32g-actorder_True`
130
+
131
+ ### From the command line
132
+
133
+ I recommend using the `huggingface-hub` Python library:
134
+
135
+ ```shell
136
+ pip3 install huggingface-hub
137
+ ```
138
+
139
+ To download the `main` branch to a folder called `Swallow-7B-Instruct-GPTQ`:
140
+
141
+ ```shell
142
+ mkdir Swallow-7B-Instruct-GPTQ
143
+ huggingface-cli download TheBloke/Swallow-7B-Instruct-GPTQ --local-dir Swallow-7B-Instruct-GPTQ --local-dir-use-symlinks False
144
+ ```
145
+
146
+ To download from a different branch, add the `--revision` parameter:
147
+
148
+ ```shell
149
+ mkdir Swallow-7B-Instruct-GPTQ
150
+ huggingface-cli download TheBloke/Swallow-7B-Instruct-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir Swallow-7B-Instruct-GPTQ --local-dir-use-symlinks False
151
+ ```
152
+
153
+ <details>
154
+ <summary>More advanced huggingface-cli download usage</summary>
155
+
156
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
157
+
158
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
159
+
160
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
161
+
162
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
163
+
164
+ ```shell
165
+ pip3 install hf_transfer
166
+ ```
167
+
168
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
169
+
170
+ ```shell
171
+ mkdir Swallow-7B-Instruct-GPTQ
172
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Swallow-7B-Instruct-GPTQ --local-dir Swallow-7B-Instruct-GPTQ --local-dir-use-symlinks False
173
+ ```
174
+
175
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
176
+ </details>
177
+
178
+ ### With `git` (**not** recommended)
179
+
180
+ To clone a specific branch with `git`, use a command like this:
181
+
182
+ ```shell
183
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Swallow-7B-Instruct-GPTQ
184
+ ```
185
+
186
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
187
+
188
+ <!-- README_GPTQ.md-download-from-branches end -->
189
+ <!-- README_GPTQ.md-text-generation-webui start -->
190
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
191
+
192
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
193
+
194
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
195
+
196
+ 1. Click the **Model tab**.
197
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Swallow-7B-Instruct-GPTQ`.
198
+
199
+ - To download from a specific branch, enter for example `TheBloke/Swallow-7B-Instruct-GPTQ:gptq-4bit-32g-actorder_True`
200
+ - see Provided Files above for the list of branches for each option.
201
+
202
+ 3. Click **Download**.
203
+ 4. The model will start downloading. Once it's finished it will say "Done".
204
+ 5. In the top left, click the refresh icon next to **Model**.
205
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Swallow-7B-Instruct-GPTQ`
206
+ 7. The model will automatically load, and is now ready for use!
207
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
208
+
209
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
210
+
211
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
212
+
213
+ <!-- README_GPTQ.md-text-generation-webui end -->
214
+
215
+ <!-- README_GPTQ.md-use-from-tgi start -->
216
+ ## Serving this model from Text Generation Inference (TGI)
217
+
218
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
219
+
220
+ Example Docker parameters:
221
+
222
+ ```shell
223
+ --model-id TheBloke/Swallow-7B-Instruct-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
224
+ ```
225
+
226
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
227
+
228
+ ```shell
229
+ pip3 install huggingface-hub
230
+ ```
231
+
232
+ ```python
233
+ from huggingface_hub import InferenceClient
234
+
235
+ endpoint_url = "https://your-endpoint-url-here"
236
+
237
+ prompt = "Tell me about AI"
238
+ prompt_template=f'''以下に、あるタスクを説明する指示があります。リクエストを適切に完了するための回答を記述してください。\n\n### 指示:\n{prompt}\n\n### 応答:
239
+ '''
240
+
241
+ client = InferenceClient(endpoint_url)
242
+ response = client.text_generation(prompt,
243
+ max_new_tokens=128,
244
+ do_sample=True,
245
+ temperature=0.7,
246
+ top_p=0.95,
247
+ top_k=40,
248
+ repetition_penalty=1.1)
249
+
250
+ print(f"Model output: {response}")
251
+ ```
252
+ <!-- README_GPTQ.md-use-from-tgi end -->
253
+ <!-- README_GPTQ.md-use-from-python start -->
254
+ ## Python code example: inference from this GPTQ model
255
+
256
+ ### Install the necessary packages
257
+
258
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
259
+
260
+ ```shell
261
+ pip3 install --upgrade transformers optimum
262
+ # If using PyTorch 2.1 + CUDA 12.x:
263
+ pip3 install --upgrade auto-gptq
264
+ # or, if using PyTorch 2.1 + CUDA 11.x:
265
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
266
+ ```
267
+
268
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
269
+
270
+ ```shell
271
+ pip3 uninstall -y auto-gptq
272
+ git clone https://github.com/PanQiWei/AutoGPTQ
273
+ cd AutoGPTQ
274
+ git checkout v0.5.1
275
+ pip3 install .
276
+ ```
277
+
278
+ ### Example Python code
279
+
280
+ ```python
281
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
282
+
283
+ model_name_or_path = "TheBloke/Swallow-7B-Instruct-GPTQ"
284
+ # To use a different branch, change revision
285
+ # For example: revision="gptq-4bit-32g-actorder_True"
286
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
287
+ device_map="auto",
288
+ trust_remote_code=False,
289
+ revision="main")
290
+
291
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
292
+
293
+ prompt = "Write a story about llamas"
294
+ system_message = "You are a story writing assistant"
295
+ prompt_template=f'''以下に、あるタスクを説明する指示があります。リクエストを適切に完了するための回答を記述してください。\n\n### 指示:\n{prompt}\n\n### 応答:
296
+ '''
297
+
298
+ print("\n\n*** Generate:")
299
+
300
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
301
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
302
+ print(tokenizer.decode(output[0]))
303
+
304
+ # Inference can also be done using transformers' pipeline
305
+
306
+ print("*** Pipeline:")
307
+ pipe = pipeline(
308
+ "text-generation",
309
+ model=model,
310
+ tokenizer=tokenizer,
311
+ max_new_tokens=512,
312
+ do_sample=True,
313
+ temperature=0.7,
314
+ top_p=0.95,
315
+ top_k=40,
316
+ repetition_penalty=1.1
317
+ )
318
+
319
+ print(pipe(prompt_template)[0]['generated_text'])
320
+ ```
321
+ <!-- README_GPTQ.md-use-from-python end -->
322
+
323
+ <!-- README_GPTQ.md-compatibility start -->
324
+ ## Compatibility
325
+
326
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
327
+
328
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility.
329
+
330
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
331
+ <!-- README_GPTQ.md-compatibility end -->
332
+
333
+ <!-- footer start -->
334
+ <!-- 200823 -->
335
+ ## Discord
336
+
337
+ For further support, and discussions on these models and AI in general, join us at:
338
+
339
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
340
+
341
+ ## Thanks, and how to contribute
342
+
343
+ Thanks to the [chirper.ai](https://chirper.ai) team!
344
+
345
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
346
+
347
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
348
+
349
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
350
+
351
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
352
+
353
+ * Patreon: https://patreon.com/TheBlokeAI
354
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
355
+
356
+ **Special thanks to**: Aemon Algiz.
357
+
358
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
359
+
360
+
361
+ Thank you to all my generous patrons and donaters!
362
+
363
+ And thank you again to a16z for their generous grant.
364
+
365
+ <!-- footer end -->
366
+
367
+ # Original model card: tokyotech-llm's Swallow 7B Instruct
368
+
369
+
370
+ # Swallow
371
+
372
+ Our Swallow model has undergone continuous pre-training from the Llama 2 family, primarily with the addition of Japanese language data. The tuned versions use supervised fine-tuning (SFT).
373
+ Links to other models can be found in the index.
374
+
375
+ ## Swallow Model Index
376
+ |Model|Swallow-hf|Swallow-instruct-hf|
377
+ |---|---|---|
378
+ |7B| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-hf)|
379
+ |13B| [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-hf)|
380
+ |70B| [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf)|
381
+
382
+
383
+ ![logo](./logo.png)
384
+
385
+ This repository provides large language models developed by [TokyoTech-LLM](https://tokyotech-llm.github.io/).
386
+ Read our [blog post](https://zenn.dev/tokyotech_lm/articles/d6cb3a8fdfc907) or our paper (preprint coming soon) for more details!
387
+
388
+
389
+ ## Model Details
390
+
391
+ * **Model type**: Please refer to LLaMA-2 technical report for details on the model architecture.
392
+ * **Language(s)**: Japanese English
393
+ * **Library**: [Megatron-LM](https://github.com/rioyokotalab/Megatron-Llama2)
394
+ * **Tokenizer**: This model employs a tokenizer that features a broadened vocabulary based on Japanese data. This allows for a more efficient representation of text using fewer tokens, leading to a notably faster inference process.
395
+ * **Contact**: swallow[at]nlp.c.titech.ac.jp
396
+
397
+ ## Base Model Performance
398
+
399
+ ### Japanese version
400
+
401
+ |Model|Size|JCommonsenseQA|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|
402
+ |---|---|---|---|---|---|---|---|---|---|
403
+ | | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|
404
+ |Llama 2|7B|0.3852|0.4240|0.3410|0.7917|0.1905|0.0760|0.1783|0.1738|
405
+ |Swallow|7B|0.4808|0.5078|0.5968|0.8573|0.1830|0.1240|0.2510|0.1511|
406
+ |Llama 2|13B|0.6997|0.4415|0.4170|0.8533|0.2139|0.1320|0.2146|0.1982|
407
+ |Swallow|13B|0.7837|0.5063|0.6398|0.9005|0.2168|0.2040|0.2720|0.1771|
408
+ |Llama 2|70B|0.8686|0.4656|0.5256|0.9080|**0.2361**|0.3560|0.2643|**0.2398**|
409
+ |Swallow|70B|**0.9348**|**0.6290**|**0.6960**|**0.9176**|0.2266|**0.4840**|**0.3043**|0.2298|
410
+
411
+ ## Usage
412
+
413
+ First install additional dependencies in [requirements.txt](./requirements.txt):
414
+
415
+ ```sh
416
+ pip install -r requirements.txt
417
+ ```
418
+
419
+ ### Use the instruct model
420
+
421
+ ```python
422
+ import torch
423
+ from transformers import AutoTokenizer, AutoModelForCausalLM
424
+
425
+ model_name = "tokyotech-llm/Swallow-7b-instruct-hf"
426
+
427
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
428
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto")
429
+
430
+
431
+ PROMPT_DICT = {
432
+ "prompt_input": (
433
+ "以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。"
434
+ "リクエストを適切に完了するための回答を記述してください。\n\n"
435
+ "### 指示:\n{instruction}\n\n### 入力:\n{input}\n\n### 応答:"
436
+
437
+ ),
438
+ "prompt_no_input": (
439
+ "以下に、あるタスクを説明する指示があります。"
440
+ "リクエストを適切に完了するための回答を記述してください。\n\n"
441
+ "### 指示:\n{instruction}\n\n### 応答:"
442
+ ),
443
+ }
444
+
445
+ def create_prompt(instruction, input=None):
446
+ """
447
+ Generates a prompt based on the given instruction and an optional input.
448
+ If input is provided, it uses the 'prompt_input' template from PROMPT_DICT.
449
+ If no input is provided, it uses the 'prompt_no_input' template.
450
+
451
+ Args:
452
+ instruction (str): The instruction describing the task.
453
+ input (str, optional): Additional input providing context for the task. Default is None.
454
+
455
+ Returns:
456
+ str: The generated prompt.
457
+ """
458
+ if input:
459
+ # Use the 'prompt_input' template when additional input is provided
460
+ return PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input)
461
+ else:
462
+ # Use the 'prompt_no_input' template when no additional input is provided
463
+ return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)
464
+
465
+ # Example usage
466
+ instruction_example = "以下のトピックに関する詳細な情報を提供してください。"
467
+ input_example = "東京工業大学の主なキャンパスについて教えてください"
468
+ prompt = create_prompt(instruction_example, input_example)
469
+
470
+ input_ids = tokenizer.encode(
471
+ prompt,
472
+ add_special_tokens=False,
473
+ return_tensors="pt"
474
+ )
475
+
476
+ tokens = model.generate(
477
+ input_ids.to(device=model.device),
478
+ max_new_tokens=128,
479
+ temperature=0.99,
480
+ top_p=0.95,
481
+ do_sample=True,
482
+ )
483
+
484
+ out = tokenizer.decode(tokens[0], skip_special_tokens=True)
485
+ print(out)
486
+
487
+ ```
488
+
489
+ ### Use the base model
490
+
491
+ ```python
492
+ import torch
493
+ from transformers import AutoTokenizer, AutoModelForCausalLM
494
+
495
+ model_name = "tokyotech-llm/Swallow-7b-hf"
496
+
497
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
498
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
499
+
500
+ prompt = "東京工業大学の主なキャンパスは、"
501
+ input_ids = tokenizer.encode(
502
+ prompt,
503
+ add_special_tokens=False,
504
+ return_tensors="pt"
505
+ )
506
+ tokens = model.generate(
507
+ input_ids.to(device=model.device),
508
+ max_new_tokens=128,
509
+ temperature=0.99,
510
+ top_p=0.95,
511
+ do_sample=True,
512
+ )
513
+
514
+ out = tokenizer.decode(tokens[0], skip_special_tokens=True)
515
+ print(out)
516
+ ```
517
+
518
+ ## Training Datasets
519
+
520
+ ### Continual Pre-Training
521
+ The following datasets were used for continual pre-training.
522
+
523
+ - [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
524
+ - [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
525
+ - Swallow Corpus
526
+ - [The Pile](https://huggingface.co/datasets/EleutherAI/pile)
527
+
528
+
529
+ ### Instruction Tuning
530
+
531
+ The following datasets were used for the instruction tuning.
532
+
533
+ - [Anthropic HH-RLHF](https://huggingface.co/datasets/kunishou/hh-rlhf-49k-ja)
534
+ - [Databricks Dolly 15-k](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja)
535
+ - [OpenAssistant Conversations Dataset](https://huggingface.co/datasets/kunishou/oasst1-89k-ja)
536
+
537
+ ## Risks and Limitations
538
+
539
+ The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
540
+
541
+ ## Acknowledgements
542
+
543
+ We thank Meta Research for releasing Llama 2 under an open license for others to build on.
544
+
545
+ Our project is supported by the [ABCI Large-scale Language Model Building Support Program](https://abci.ai/en/link/llm_support_program.html) of the National Institute of Advanced Industrial Science and Technology.
546
+
547
+ ## License
548
+
549
+ Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.
550
+
551
+ ## Authors
552
+
553
+ Here are the team members:
554
+ - From [Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members:
555
+ - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html)
556
+ - [Sakae Mizuki](https://s-mizuki-nlp.github.io/)
557
+ - [Hiroki Iida](https://meshidenn.github.io/)
558
+ - [Mengsay Loem](https://loem-ms.github.io/)
559
+ - [Shota Hirai](https://huggingface.co/Kotemo428)
560
+ - [Kakeru Hattori](https://aya-se.vercel.app/)
561
+ - [Masanari Ohi](https://twitter.com/stjohn2007)
562
+ - From [YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members:
563
+ - [Rio Yokota](https://twitter.com/rioyokota)
564
+ - [Kazuki Fujii](https://twitter.com/okoge_kaz)
565
+ - [Taishi Nakamura](https://twitter.com/Setuna7777_2)