File size: 7,562 Bytes
e319242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eca57a
e319242
 
 
 
 
 
 
 
b20041c
e319242
 
 
b20041c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b45c38c
b20041c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e319242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b20041c
e319242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
---
inference: false
license: other
---

<!-- header start -->
<div style="width: 100%;">
    <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<!-- header end -->

# Manticore 13B Chat Pyg Guanaco fp16

This is fp16 pytorch format model files for [Manticore 13B Chat Pyg Guanaco](https://huggingface.co/Monero/Manticore-13b-Chat-Pyg-Guanaco) merged with [Kaio Ken's SuperHOT 8K](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test).

[Kaio Ken's SuperHOT 13b LoRA](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test) is merged on to the base model, and then 8K context can be achieved during inference by using `trust_remote_code=True`.

Note that `config.json` has been set to a sequence length of 8192. This can be modified to 4096 if you want to try with a smaller sequence length.

## Repositories available

* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Manticore-13B-Chat-Pyg-Guanaco-SuperHOT-8K-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/Manticore-13B-Chat-Pyg-Guanaco-SuperHOT-8K-GGML)
* [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Manticore-13B-Chat-Pyg-Guanaco-SuperHOT-8K-fp16)
* [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Monero/Manticore-13b-Chat-Pyg-Guanaco)

## How to use this model from Python code

First make sure you have Einops installed:

```
pip3 install auto-gptq
```

Then run the following code. `config.json` has been default to a sequence length of 8192, but you can also configure this in your Python code.

The provided modelling code, activated with `trust_remote_code=True` will automatically set the `scale` parameter from the configured `max_position_embeddings`. Eg for 8192, `scale` is set to `4`.

```python
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, pipeline
import argparse

model_name_or_path = "TheBloke/Manticore-13B-Chat-Pyg-Guanaco-SuperHOT-8K-fp16"

use_triton = False

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
# Change this to the sequence length you want
config.max_position_embeddings = 8192

model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
        config=config,
        trust_remote_code=True,
        device_map='auto')

# Note: check to confirm if this is correct prompt template is correct for this model!
prompt = "Tell me about AI"
prompt_template=f'''USER: {prompt}
ASSISTANT:'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    temperature=0.7,
    top_p=0.95,
    repetition_penalty=1.15
)

print(pipe(prompt_template)[0]['generated_text'])
```

## Using other UIs: monkey patch

Provided in the repo is `llama_rope_scaled_monkey_patch.py`, written by @kaiokendev.

It can be theoretically be added to any Python UI or custom code to enable the same result as `trust_remote_code=True`.  I have not tested this, and it should be superseded by using `trust_remote_code=True`, but I include it for completeness and for interest.

<!-- footer start -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute.

Thanks to the [chirper.ai](https://chirper.ai) team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.

**Patreon special mentions**: zynix , ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski.

Thank you to all my generous patrons and donaters!

<!-- footer end -->

# Original model card: Kaio Ken's SuperHOT 8K

### SuperHOT Prototype 2 w/ 8K Context

This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
Tests have shown that the model does indeed leverage the extended context at 8K.

You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**

#### Looking for Merged & Quantized Models?
- 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors)
- 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors)


#### Training Details
I trained the LoRA with the following configuration:
- 1200 samples (~400 samples over 2048 sequence length)
  - learning rate of 3e-4
  - 3 epochs
  - The exported modules are:
  - q_proj
  - k_proj
  - v_proj
  - o_proj
  - no bias
  - Rank = 4
  - Alpha = 8
  - no dropout
  - weight decay of 0.1
  - AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
  - Trained on 4-bit base model

# Original model card: Manticore 13B Chat Pyg Guanaco

Manticore-13b-Chat-Pyg with the Guanaco 13b qLoRa from TimDettmers applied