TheBloke commited on
Commit
a9c54c6
1 Parent(s): ad9c54a

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +428 -0
README.md ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: brucethemoose/Capybara-Tess-Yi-34B-200K-DARE-Ties
3
+ inference: false
4
+ language:
5
+ - en
6
+ library_name: transformers
7
+ license: other
8
+ license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE
9
+ license_name: yi-license
10
+ model_creator: brucethemoose
11
+ model_name: Capybara Tess Yi 34B 200K Dare Ties
12
+ model_type: yi
13
+ pipeline_tag: text-generation
14
+ prompt_template: 'SYSTEM: {system_message}
15
+
16
+ USER: {prompt}
17
+
18
+ ASSISTANT:
19
+
20
+ '
21
+ quantized_by: TheBloke
22
+ ---
23
+ <!-- markdownlint-disable MD041 -->
24
+
25
+ <!-- header start -->
26
+ <!-- 200823 -->
27
+ <div style="width: auto; margin-left: auto; margin-right: auto">
28
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
29
+ </div>
30
+ <div style="display: flex; justify-content: space-between; width: 100%;">
31
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
32
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
33
+ </div>
34
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
35
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
36
+ </div>
37
+ </div>
38
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
39
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
40
+ <!-- header end -->
41
+
42
+ # Capybara Tess Yi 34B 200K Dare Ties - AWQ
43
+ - Model creator: [brucethemoose](https://huggingface.co/brucethemoose)
44
+ - Original model: [Capybara Tess Yi 34B 200K Dare Ties](https://huggingface.co/brucethemoose/Capybara-Tess-Yi-34B-200K-DARE-Ties)
45
+
46
+ <!-- description start -->
47
+ ## Description
48
+
49
+ This repo contains AWQ model files for [brucethemoose's Capybara Tess Yi 34B 200K Dare Ties](https://huggingface.co/brucethemoose/Capybara-Tess-Yi-34B-200K-DARE-Ties).
50
+
51
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
52
+
53
+
54
+ ### About AWQ
55
+
56
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
57
+
58
+ It is supported by:
59
+
60
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
61
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
62
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
63
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
64
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
65
+
66
+ <!-- description end -->
67
+ <!-- repositories-available start -->
68
+ ## Repositories available
69
+
70
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Capybara-Tess-Yi-34B-200K-DARE-Ties-AWQ)
71
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Capybara-Tess-Yi-34B-200K-DARE-Ties-GPTQ)
72
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Capybara-Tess-Yi-34B-200K-DARE-Ties-GGUF)
73
+ * [brucethemoose's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/brucethemoose/Capybara-Tess-Yi-34B-200K-DARE-Ties)
74
+ <!-- repositories-available end -->
75
+
76
+ <!-- prompt-template start -->
77
+ ## Prompt template: Orca-Vicuna
78
+
79
+ ```
80
+ SYSTEM: {system_message}
81
+ USER: {prompt}
82
+ ASSISTANT:
83
+
84
+ ```
85
+
86
+ <!-- prompt-template end -->
87
+
88
+
89
+ <!-- README_AWQ.md-provided-files start -->
90
+ ## Provided files, and AWQ parameters
91
+
92
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
93
+
94
+ Models are released as sharded safetensors files.
95
+
96
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
97
+ | ------ | ---- | -- | ----------- | ------- | ---- |
98
+ | [main](https://huggingface.co/TheBloke/Capybara-Tess-Yi-34B-200K-DARE-Ties-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 19.23 GB
99
+
100
+ <!-- README_AWQ.md-provided-files end -->
101
+
102
+ <!-- README_AWQ.md-text-generation-webui start -->
103
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
104
+
105
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
106
+
107
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
108
+
109
+ 1. Click the **Model tab**.
110
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Capybara-Tess-Yi-34B-200K-DARE-Ties-AWQ`.
111
+ 3. Click **Download**.
112
+ 4. The model will start downloading. Once it's finished it will say "Done".
113
+ 5. In the top left, click the refresh icon next to **Model**.
114
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Capybara-Tess-Yi-34B-200K-DARE-Ties-AWQ`
115
+ 7. Select **Loader: AutoAWQ**.
116
+ 8. Click Load, and the model will load and is now ready for use.
117
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
118
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
119
+ <!-- README_AWQ.md-text-generation-webui end -->
120
+
121
+ <!-- README_AWQ.md-use-from-vllm start -->
122
+ ## Multi-user inference server: vLLM
123
+
124
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
125
+
126
+ - Please ensure you are using vLLM version 0.2 or later.
127
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
128
+
129
+ For example:
130
+
131
+ ```shell
132
+ python3 -m vllm.entrypoints.api_server --model TheBloke/Capybara-Tess-Yi-34B-200K-DARE-Ties-AWQ --quantization awq --dtype auto
133
+ ```
134
+
135
+ - When using vLLM from Python code, again set `quantization=awq`.
136
+
137
+ For example:
138
+
139
+ ```python
140
+ from vllm import LLM, SamplingParams
141
+
142
+ prompts = [
143
+ "Tell me about AI",
144
+ "Write a story about llamas",
145
+ "What is 291 - 150?",
146
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
147
+ ]
148
+ prompt_template=f'''SYSTEM: {system_message}
149
+ USER: {prompt}
150
+ ASSISTANT:
151
+ '''
152
+
153
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
154
+
155
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
156
+
157
+ llm = LLM(model="TheBloke/Capybara-Tess-Yi-34B-200K-DARE-Ties-AWQ", quantization="awq", dtype="auto")
158
+
159
+ outputs = llm.generate(prompts, sampling_params)
160
+
161
+ # Print the outputs.
162
+ for output in outputs:
163
+ prompt = output.prompt
164
+ generated_text = output.outputs[0].text
165
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
166
+ ```
167
+ <!-- README_AWQ.md-use-from-vllm start -->
168
+
169
+ <!-- README_AWQ.md-use-from-tgi start -->
170
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
171
+
172
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
173
+
174
+ Example Docker parameters:
175
+
176
+ ```shell
177
+ --model-id TheBloke/Capybara-Tess-Yi-34B-200K-DARE-Ties-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
178
+ ```
179
+
180
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
181
+
182
+ ```shell
183
+ pip3 install huggingface-hub
184
+ ```
185
+
186
+ ```python
187
+ from huggingface_hub import InferenceClient
188
+
189
+ endpoint_url = "https://your-endpoint-url-here"
190
+
191
+ prompt = "Tell me about AI"
192
+ prompt_template=f'''SYSTEM: {system_message}
193
+ USER: {prompt}
194
+ ASSISTANT:
195
+ '''
196
+
197
+ client = InferenceClient(endpoint_url)
198
+ response = client.text_generation(prompt,
199
+ max_new_tokens=128,
200
+ do_sample=True,
201
+ temperature=0.7,
202
+ top_p=0.95,
203
+ top_k=40,
204
+ repetition_penalty=1.1)
205
+
206
+ print(f"Model output: ", response)
207
+ ```
208
+ <!-- README_AWQ.md-use-from-tgi end -->
209
+
210
+ <!-- README_AWQ.md-use-from-python start -->
211
+ ## Inference from Python code using Transformers
212
+
213
+ ### Install the necessary packages
214
+
215
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
216
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
217
+
218
+ ```shell
219
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
220
+ ```
221
+
222
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
223
+
224
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
225
+
226
+ ```shell
227
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
228
+ ```
229
+
230
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
231
+
232
+ ```shell
233
+ pip3 uninstall -y autoawq
234
+ git clone https://github.com/casper-hansen/AutoAWQ
235
+ cd AutoAWQ
236
+ pip3 install .
237
+ ```
238
+
239
+ ### Transformers example code (requires Transformers 4.35.0 and later)
240
+
241
+ ```python
242
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
243
+
244
+ model_name_or_path = "TheBloke/Capybara-Tess-Yi-34B-200K-DARE-Ties-AWQ"
245
+
246
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
247
+ model = AutoModelForCausalLM.from_pretrained(
248
+ model_name_or_path,
249
+ low_cpu_mem_usage=True,
250
+ device_map="cuda:0"
251
+ )
252
+
253
+ # Using the text streamer to stream output one token at a time
254
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
255
+
256
+ prompt = "Tell me about AI"
257
+ prompt_template=f'''SYSTEM: {system_message}
258
+ USER: {prompt}
259
+ ASSISTANT:
260
+ '''
261
+
262
+ # Convert prompt to tokens
263
+ tokens = tokenizer(
264
+ prompt_template,
265
+ return_tensors='pt'
266
+ ).input_ids.cuda()
267
+
268
+ generation_params = {
269
+ "do_sample": True,
270
+ "temperature": 0.7,
271
+ "top_p": 0.95,
272
+ "top_k": 40,
273
+ "max_new_tokens": 512,
274
+ "repetition_penalty": 1.1
275
+ }
276
+
277
+ # Generate streamed output, visible one token at a time
278
+ generation_output = model.generate(
279
+ tokens,
280
+ streamer=streamer,
281
+ **generation_params
282
+ )
283
+
284
+ # Generation without a streamer, which will include the prompt in the output
285
+ generation_output = model.generate(
286
+ tokens,
287
+ **generation_params
288
+ )
289
+
290
+ # Get the tokens from the output, decode them, print them
291
+ token_output = generation_output[0]
292
+ text_output = tokenizer.decode(token_output)
293
+ print("model.generate output: ", text_output)
294
+
295
+ # Inference is also possible via Transformers' pipeline
296
+ from transformers import pipeline
297
+
298
+ pipe = pipeline(
299
+ "text-generation",
300
+ model=model,
301
+ tokenizer=tokenizer,
302
+ **generation_params
303
+ )
304
+
305
+ pipe_output = pipe(prompt_template)[0]['generated_text']
306
+ print("pipeline output: ", pipe_output)
307
+
308
+ ```
309
+ <!-- README_AWQ.md-use-from-python end -->
310
+
311
+ <!-- README_AWQ.md-compatibility start -->
312
+ ## Compatibility
313
+
314
+ The files provided are tested to work with:
315
+
316
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
317
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
318
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
319
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
320
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
321
+
322
+ <!-- README_AWQ.md-compatibility end -->
323
+
324
+ <!-- footer start -->
325
+ <!-- 200823 -->
326
+ ## Discord
327
+
328
+ For further support, and discussions on these models and AI in general, join us at:
329
+
330
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
331
+
332
+ ## Thanks, and how to contribute
333
+
334
+ Thanks to the [chirper.ai](https://chirper.ai) team!
335
+
336
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
337
+
338
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
339
+
340
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
341
+
342
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
343
+
344
+ * Patreon: https://patreon.com/TheBlokeAI
345
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
346
+
347
+ **Special thanks to**: Aemon Algiz.
348
+
349
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
350
+
351
+
352
+ Thank you to all my generous patrons and donaters!
353
+
354
+ And thank you again to a16z for their generous grant.
355
+
356
+ <!-- footer end -->
357
+
358
+ # Original model card: brucethemoose's Capybara Tess Yi 34B 200K Dare Ties
359
+
360
+
361
+ **NousResearch/Nous-Capybara-34B**, **migtissera/Tess-M-v1.2** and **migtissera/Tess-M-v1.3** merged with a new, experimental implementation of "dare ties" via mergekit. See:
362
+
363
+ > Language Models are Super Mario: Absorbing Abilities from Homologous Models as a Free Lunch
364
+
365
+ https://github.com/yule-BUAA/MergeLM
366
+
367
+ https://github.com/cg123/mergekit/tree/dare-tokenizer
368
+
369
+ Highly experimental and still being tested! But this should yield a better merge than a typical linear/slerp merge or even a ties merge.
370
+ ***
371
+
372
+ Merged with the following config, and the tokenizer from Yi Llamafied:
373
+ ```
374
+ models:
375
+ - model: /home/alpha/Storage/Models/Raw/larryvrh_Yi-34B-200K-Llamafied
376
+ # no parameters necessary for base model
377
+ - model: /home/alpha/Storage/Models/Raw/migtissera_Tess-M-v1.3
378
+ parameters:
379
+ weight: 0.50
380
+ density: 0.56
381
+ - model: /home/alpha/Storage/Models/Raw/migtissera_Tess-M-v1.2
382
+ parameters:
383
+ weight: 0.20
384
+ density: 0.50
385
+ - model: /home/alpha/Storage/Models/Raw/Nous-Capybara-34B
386
+ parameters:
387
+ weight: 0.50
388
+ density: 0.56
389
+ merge_method: dare_ties
390
+ base_model: /home/alpha/Storage/Models/Raw/larryvrh_Yi-34B-200K-Llamafied
391
+ parameters:
392
+ int8_mask: true
393
+ dtype: bfloat16
394
+ ```
395
+
396
+ Tess 1.2 (at a low weight) and 1.3 were used because, according to the trainer, they were trained on different datasets: https://migel.substack.com/p/learnings-from-training-tess
397
+
398
+ I chose not to include other finetunes, such as Dolphin, because they aren't trained on the 200K base. If any other 200K finetunes pop up, let me know.
399
+
400
+ ***
401
+
402
+ ## Prompt template: Orca-Vicuna
403
+
404
+ ```
405
+ SYSTEM: {system_message}
406
+ USER: {prompt}
407
+ ASSISTANT:
408
+
409
+ ```
410
+ Being a Yi model, try disabling the BOS token and/or running a lower temperature with MinP if output doesn't seem right.
411
+
412
+ Sometimes the model "spells out" the stop token as `</s>` like Capybara, so you may need to add `</s>` as an additional stopping condition.
413
+
414
+ ***
415
+
416
+ Credits:
417
+
418
+ https://github.com/cg123/mergekit/tree/dare-tokenizer
419
+
420
+ https://huggingface.co/NousResearch/Nous-Capybara-34B/
421
+
422
+ https://huggingface.co/migtissera/Tess-M-v1.2
423
+
424
+ https://huggingface.co/migtissera/Tess-M-v1.3
425
+
426
+ https://huggingface.co/larryvrh/Yi-34B-200K-Llamafied
427
+
428
+ https://huggingface.co/01-ai/Yi-34B-200K