shayasd commited on
Commit
095920a
1 Parent(s): c292072

Update Readme.md

Browse files
Files changed (1) hide show
  1. README.md +1078 -1078
README.md CHANGED
@@ -1,1079 +1,1079 @@
1
- ---
2
- tags:
3
- - mteb
4
- model-index:
5
- - name: conan-embedding
6
- results:
7
- - task:
8
- type: STS
9
- dataset:
10
- type: C-MTEB/AFQMC
11
- name: MTEB AFQMC
12
- config: default
13
- split: validation
14
- revision: None
15
- metrics:
16
- - type: cos_sim_pearson
17
- value: 57.32391831434286
18
- - type: cos_sim_spearman
19
- value: 60.95420518306528
20
- - type: euclidean_pearson
21
- value: 58.73713689471779
22
- - type: euclidean_spearman
23
- value: 60.05871977323687
24
- - type: manhattan_pearson
25
- value: 58.71439394187201
26
- - type: manhattan_spearman
27
- value: 60.03726849511567
28
- - task:
29
- type: STS
30
- dataset:
31
- type: C-MTEB/ATEC
32
- name: MTEB ATEC
33
- config: default
34
- split: test
35
- revision: None
36
- metrics:
37
- - type: cos_sim_pearson
38
- value: 57.416459629680325
39
- - type: cos_sim_spearman
40
- value: 58.78935983944373
41
- - type: euclidean_pearson
42
- value: 62.569916488206054
43
- - type: euclidean_spearman
44
- value: 58.32089170859326
45
- - type: manhattan_pearson
46
- value: 62.552144365725816
47
- - type: manhattan_spearman
48
- value: 58.31304102953674
49
- - task:
50
- type: Classification
51
- dataset:
52
- type: mteb/amazon_reviews_multi
53
- name: MTEB AmazonReviewsClassification (zh)
54
- config: zh
55
- split: test
56
- revision: 1399c76144fd37290681b995c656ef9b2e06e26d
57
- metrics:
58
- - type: accuracy
59
- value: 50.364
60
- - type: f1
61
- value: 47.373487235615706
62
- - task:
63
- type: STS
64
- dataset:
65
- type: C-MTEB/BQ
66
- name: MTEB BQ
67
- config: default
68
- split: test
69
- revision: None
70
- metrics:
71
- - type: cos_sim_pearson
72
- value: 73.16013393385914
73
- - type: cos_sim_spearman
74
- value: 74.79454418123198
75
- - type: euclidean_pearson
76
- value: 72.91991570850215
77
- - type: euclidean_spearman
78
- value: 74.40420227973465
79
- - type: manhattan_pearson
80
- value: 72.91482392990748
81
- - type: manhattan_spearman
82
- value: 74.40097720245406
83
- - task:
84
- type: Clustering
85
- dataset:
86
- type: C-MTEB/CLSClusteringP2P
87
- name: MTEB CLSClusteringP2P
88
- config: default
89
- split: test
90
- revision: None
91
- metrics:
92
- - type: v_measure
93
- value: 59.86170547809245
94
- - task:
95
- type: Clustering
96
- dataset:
97
- type: C-MTEB/CLSClusteringS2S
98
- name: MTEB CLSClusteringS2S
99
- config: default
100
- split: test
101
- revision: None
102
- metrics:
103
- - type: v_measure
104
- value: 50.38135526839833
105
- - task:
106
- type: Reranking
107
- dataset:
108
- type: C-MTEB/CMedQAv1-reranking
109
- name: MTEB CMedQAv1
110
- config: default
111
- split: test
112
- revision: None
113
- metrics:
114
- - type: map
115
- value: 90.92142640302838
116
- - type: mrr
117
- value: 92.76190476190476
118
- - task:
119
- type: Reranking
120
- dataset:
121
- type: C-MTEB/CMedQAv2-reranking
122
- name: MTEB CMedQAv2
123
- config: default
124
- split: test
125
- revision: None
126
- metrics:
127
- - type: map
128
- value: 90.0539331525924
129
- - type: mrr
130
- value: 92.00964285714285
131
- - task:
132
- type: Retrieval
133
- dataset:
134
- type: C-MTEB/CmedqaRetrieval
135
- name: MTEB CmedqaRetrieval
136
- config: default
137
- split: dev
138
- revision: None
139
- metrics:
140
- - type: map_at_1
141
- value: 26.480999999999998
142
- - type: map_at_10
143
- value: 40.129
144
- - type: map_at_100
145
- value: 42.025
146
- - type: map_at_1000
147
- value: 42.123
148
- - type: map_at_3
149
- value: 35.644
150
- - type: map_at_5
151
- value: 38.187
152
- - type: mrr_at_1
153
- value: 40.01
154
- - type: mrr_at_10
155
- value: 48.886
156
- - type: mrr_at_100
157
- value: 49.825
158
- - type: mrr_at_1000
159
- value: 49.864000000000004
160
- - type: mrr_at_3
161
- value: 46.178000000000004
162
- - type: mrr_at_5
163
- value: 47.711999999999996
164
- - type: ndcg_at_1
165
- value: 40.01
166
- - type: ndcg_at_10
167
- value: 47.032000000000004
168
- - type: ndcg_at_100
169
- value: 54.135
170
- - type: ndcg_at_1000
171
- value: 55.821
172
- - type: ndcg_at_3
173
- value: 41.377
174
- - type: ndcg_at_5
175
- value: 43.808
176
- - type: precision_at_1
177
- value: 40.01
178
- - type: precision_at_10
179
- value: 10.495000000000001
180
- - type: precision_at_100
181
- value: 1.628
182
- - type: precision_at_1000
183
- value: 0.184
184
- - type: precision_at_3
185
- value: 23.648
186
- - type: precision_at_5
187
- value: 17.224
188
- - type: recall_at_1
189
- value: 26.480999999999998
190
- - type: recall_at_10
191
- value: 58.557
192
- - type: recall_at_100
193
- value: 87.52799999999999
194
- - type: recall_at_1000
195
- value: 98.80600000000001
196
- - type: recall_at_3
197
- value: 41.628
198
- - type: recall_at_5
199
- value: 49.013
200
- - task:
201
- type: PairClassification
202
- dataset:
203
- type: C-MTEB/CMNLI
204
- name: MTEB Cmnli
205
- config: default
206
- split: validation
207
- revision: None
208
- metrics:
209
- - type: cos_sim_accuracy
210
- value: 86.5423932651834
211
- - type: cos_sim_ap
212
- value: 92.8551948361576
213
- - type: cos_sim_f1
214
- value: 87.07992733878292
215
- - type: cos_sim_precision
216
- value: 84.6391525049658
217
- - type: cos_sim_recall
218
- value: 89.66565349544074
219
- - type: dot_accuracy
220
- value: 77.05351773902585
221
- - type: dot_ap
222
- value: 85.41568844524294
223
- - type: dot_f1
224
- value: 79.17229905375896
225
- - type: dot_precision
226
- value: 71.29213483146067
227
- - type: dot_recall
228
- value: 89.01098901098901
229
- - type: euclidean_accuracy
230
- value: 84.49789536981359
231
- - type: euclidean_ap
232
- value: 91.54179322199462
233
- - type: euclidean_f1
234
- value: 85.58362369337979
235
- - type: euclidean_precision
236
- value: 80.08966782147951
237
- - type: euclidean_recall
238
- value: 91.88683656768764
239
- - type: manhattan_accuracy
240
- value: 84.41371016235718
241
- - type: manhattan_ap
242
- value: 91.5209564727476
243
- - type: manhattan_f1
244
- value: 85.5386606276286
245
- - type: manhattan_precision
246
- value: 79.38350680544436
247
- - type: manhattan_recall
248
- value: 92.72854804769698
249
- - type: max_accuracy
250
- value: 86.5423932651834
251
- - type: max_ap
252
- value: 92.8551948361576
253
- - type: max_f1
254
- value: 87.07992733878292
255
- - task:
256
- type: Retrieval
257
- dataset:
258
- type: C-MTEB/CovidRetrieval
259
- name: MTEB CovidRetrieval
260
- config: default
261
- split: dev
262
- revision: None
263
- metrics:
264
- - type: map_at_1
265
- value: 82.824
266
- - type: map_at_10
267
- value: 89.749
268
- - type: map_at_100
269
- value: 89.79899999999999
270
- - type: map_at_1000
271
- value: 89.8
272
- - type: map_at_3
273
- value: 89.18599999999999
274
- - type: map_at_5
275
- value: 89.586
276
- - type: mrr_at_1
277
- value: 83.035
278
- - type: mrr_at_10
279
- value: 89.699
280
- - type: mrr_at_100
281
- value: 89.749
282
- - type: mrr_at_1000
283
- value: 89.749
284
- - type: mrr_at_3
285
- value: 89.18199999999999
286
- - type: mrr_at_5
287
- value: 89.582
288
- - type: ndcg_at_1
289
- value: 83.14
290
- - type: ndcg_at_10
291
- value: 92.059
292
- - type: ndcg_at_100
293
- value: 92.292
294
- - type: ndcg_at_1000
295
- value: 92.304
296
- - type: ndcg_at_3
297
- value: 91.033
298
- - type: ndcg_at_5
299
- value: 91.716
300
- - type: precision_at_1
301
- value: 83.14
302
- - type: precision_at_10
303
- value: 9.989
304
- - type: precision_at_100
305
- value: 1.009
306
- - type: precision_at_1000
307
- value: 0.101
308
- - type: precision_at_3
309
- value: 32.35
310
- - type: precision_at_5
311
- value: 19.747
312
- - type: recall_at_1
313
- value: 82.824
314
- - type: recall_at_10
315
- value: 98.84100000000001
316
- - type: recall_at_100
317
- value: 99.895
318
- - type: recall_at_1000
319
- value: 100.0
320
- - type: recall_at_3
321
- value: 96.207
322
- - type: recall_at_5
323
- value: 97.84
324
- - task:
325
- type: Retrieval
326
- dataset:
327
- type: C-MTEB/DuRetrieval
328
- name: MTEB DuRetrieval
329
- config: default
330
- split: dev
331
- revision: None
332
- metrics:
333
- - type: map_at_1
334
- value: 26.839000000000002
335
- - type: map_at_10
336
- value: 81.363
337
- - type: map_at_100
338
- value: 84.265
339
- - type: map_at_1000
340
- value: 84.29299999999999
341
- - type: map_at_3
342
- value: 56.593
343
- - type: map_at_5
344
- value: 71.057
345
- - type: mrr_at_1
346
- value: 91.14999999999999
347
- - type: mrr_at_10
348
- value: 94.00800000000001
349
- - type: mrr_at_100
350
- value: 94.059
351
- - type: mrr_at_1000
352
- value: 94.06
353
- - type: mrr_at_3
354
- value: 93.692
355
- - type: mrr_at_5
356
- value: 93.874
357
- - type: ndcg_at_1
358
- value: 91.14999999999999
359
- - type: ndcg_at_10
360
- value: 88.584
361
- - type: ndcg_at_100
362
- value: 91.186
363
- - type: ndcg_at_1000
364
- value: 91.437
365
- - type: ndcg_at_3
366
- value: 87.287
367
- - type: ndcg_at_5
368
- value: 86.058
369
- - type: precision_at_1
370
- value: 91.14999999999999
371
- - type: precision_at_10
372
- value: 42.199999999999996
373
- - type: precision_at_100
374
- value: 4.845
375
- - type: precision_at_1000
376
- value: 0.49
377
- - type: precision_at_3
378
- value: 78.05
379
- - type: precision_at_5
380
- value: 65.53
381
- - type: recall_at_1
382
- value: 26.839000000000002
383
- - type: recall_at_10
384
- value: 89.91900000000001
385
- - type: recall_at_100
386
- value: 98.18900000000001
387
- - type: recall_at_1000
388
- value: 99.503
389
- - type: recall_at_3
390
- value: 58.622
391
- - type: recall_at_5
392
- value: 75.44
393
- - task:
394
- type: Retrieval
395
- dataset:
396
- type: C-MTEB/EcomRetrieval
397
- name: MTEB EcomRetrieval
398
- config: default
399
- split: dev
400
- revision: None
401
- metrics:
402
- - type: map_at_1
403
- value: 55.300000000000004
404
- - type: map_at_10
405
- value: 65.53
406
- - type: map_at_100
407
- value: 66.084
408
- - type: map_at_1000
409
- value: 66.09
410
- - type: map_at_3
411
- value: 62.9
412
- - type: map_at_5
413
- value: 64.45
414
- - type: mrr_at_1
415
- value: 55.300000000000004
416
- - type: mrr_at_10
417
- value: 65.53
418
- - type: mrr_at_100
419
- value: 66.084
420
- - type: mrr_at_1000
421
- value: 66.09
422
- - type: mrr_at_3
423
- value: 62.9
424
- - type: mrr_at_5
425
- value: 64.45
426
- - type: ndcg_at_1
427
- value: 55.300000000000004
428
- - type: ndcg_at_10
429
- value: 70.743
430
- - type: ndcg_at_100
431
- value: 73.202
432
- - type: ndcg_at_1000
433
- value: 73.379
434
- - type: ndcg_at_3
435
- value: 65.366
436
- - type: ndcg_at_5
437
- value: 68.142
438
- - type: precision_at_1
439
- value: 55.300000000000004
440
- - type: precision_at_10
441
- value: 8.72
442
- - type: precision_at_100
443
- value: 0.9820000000000001
444
- - type: precision_at_1000
445
- value: 0.1
446
- - type: precision_at_3
447
- value: 24.166999999999998
448
- - type: precision_at_5
449
- value: 15.840000000000002
450
- - type: recall_at_1
451
- value: 55.300000000000004
452
- - type: recall_at_10
453
- value: 87.2
454
- - type: recall_at_100
455
- value: 98.2
456
- - type: recall_at_1000
457
- value: 99.6
458
- - type: recall_at_3
459
- value: 72.5
460
- - type: recall_at_5
461
- value: 79.2
462
- - task:
463
- type: Classification
464
- dataset:
465
- type: C-MTEB/IFlyTek-classification
466
- name: MTEB IFlyTek
467
- config: default
468
- split: validation
469
- revision: None
470
- metrics:
471
- - type: accuracy
472
- value: 51.82762601000385
473
- - type: f1
474
- value: 39.89843169307487
475
- - task:
476
- type: Classification
477
- dataset:
478
- type: C-MTEB/JDReview-classification
479
- name: MTEB JDReview
480
- config: default
481
- split: test
482
- revision: None
483
- metrics:
484
- - type: accuracy
485
- value: 89.13696060037525
486
- - type: ap
487
- value: 60.815127909851284
488
- - type: f1
489
- value: 84.4053710993565
490
- - task:
491
- type: STS
492
- dataset:
493
- type: C-MTEB/LCQMC
494
- name: MTEB LCQMC
495
- config: default
496
- split: test
497
- revision: None
498
- metrics:
499
- - type: cos_sim_pearson
500
- value: 74.49480212942174
501
- - type: cos_sim_spearman
502
- value: 79.79417204577828
503
- - type: euclidean_pearson
504
- value: 79.53588770578706
505
- - type: euclidean_spearman
506
- value: 79.44601707954529
507
- - type: manhattan_pearson
508
- value: 79.52732262295254
509
- - type: manhattan_spearman
510
- value: 79.43565470474867
511
- - task:
512
- type: Reranking
513
- dataset:
514
- type: C-MTEB/Mmarco-reranking
515
- name: MTEB MMarcoReranking
516
- config: default
517
- split: dev
518
- revision: None
519
- metrics:
520
- - type: map
521
- value: 41.45350792019148
522
- - type: mrr
523
- value: 41.2468253968254
524
- - task:
525
- type: Retrieval
526
- dataset:
527
- type: C-MTEB/MMarcoRetrieval
528
- name: MTEB MMarcoRetrieval
529
- config: default
530
- split: dev
531
- revision: None
532
- metrics:
533
- - type: map_at_1
534
- value: 68.327
535
- - type: map_at_10
536
- value: 78.244
537
- - type: map_at_100
538
- value: 78.493
539
- - type: map_at_1000
540
- value: 78.498
541
- - type: map_at_3
542
- value: 76.305
543
- - type: map_at_5
544
- value: 77.549
545
- - type: mrr_at_1
546
- value: 70.63000000000001
547
- - type: mrr_at_10
548
- value: 78.78399999999999
549
- - type: mrr_at_100
550
- value: 79.001
551
- - type: mrr_at_1000
552
- value: 79.00500000000001
553
- - type: mrr_at_3
554
- value: 77.11099999999999
555
- - type: mrr_at_5
556
- value: 78.175
557
- - type: ndcg_at_1
558
- value: 70.63000000000001
559
- - type: ndcg_at_10
560
- value: 82.221
561
- - type: ndcg_at_100
562
- value: 83.281
563
- - type: ndcg_at_1000
564
- value: 83.403
565
- - type: ndcg_at_3
566
- value: 78.56400000000001
567
- - type: ndcg_at_5
568
- value: 80.65299999999999
569
- - type: precision_at_1
570
- value: 70.63000000000001
571
- - type: precision_at_10
572
- value: 9.983
573
- - type: precision_at_100
574
- value: 1.05
575
- - type: precision_at_1000
576
- value: 0.106
577
- - type: precision_at_3
578
- value: 29.69
579
- - type: precision_at_5
580
- value: 18.931
581
- - type: recall_at_1
582
- value: 68.327
583
- - type: recall_at_10
584
- value: 93.91000000000001
585
- - type: recall_at_100
586
- value: 98.56
587
- - type: recall_at_1000
588
- value: 99.508
589
- - type: recall_at_3
590
- value: 84.262
591
- - type: recall_at_5
592
- value: 89.21
593
- - task:
594
- type: Classification
595
- dataset:
596
- type: mteb/amazon_massive_intent
597
- name: MTEB MassiveIntentClassification (zh-CN)
598
- config: zh-CN
599
- split: test
600
- revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
601
- metrics:
602
- - type: accuracy
603
- value: 78.34566240753193
604
- - type: f1
605
- value: 74.84529699027114
606
- - task:
607
- type: Classification
608
- dataset:
609
- type: mteb/amazon_massive_scenario
610
- name: MTEB MassiveScenarioClassification (zh-CN)
611
- config: zh-CN
612
- split: test
613
- revision: 7d571f92784cd94a019292a1f45445077d0ef634
614
- metrics:
615
- - type: accuracy
616
- value: 86.35171486213852
617
- - type: f1
618
- value: 85.47178380961844
619
- - task:
620
- type: Retrieval
621
- dataset:
622
- type: C-MTEB/MedicalRetrieval
623
- name: MTEB MedicalRetrieval
624
- config: default
625
- split: dev
626
- revision: None
627
- metrics:
628
- - type: map_at_1
629
- value: 57.199999999999996
630
- - type: map_at_10
631
- value: 65.075
632
- - type: map_at_100
633
- value: 65.607
634
- - type: map_at_1000
635
- value: 65.63
636
- - type: map_at_3
637
- value: 63.0
638
- - type: map_at_5
639
- value: 64.145
640
- - type: mrr_at_1
641
- value: 57.099999999999994
642
- - type: mrr_at_10
643
- value: 65.024
644
- - type: mrr_at_100
645
- value: 65.556
646
- - type: mrr_at_1000
647
- value: 65.579
648
- - type: mrr_at_3
649
- value: 62.949999999999996
650
- - type: mrr_at_5
651
- value: 64.095
652
- - type: ndcg_at_1
653
- value: 57.199999999999996
654
- - type: ndcg_at_10
655
- value: 69.083
656
- - type: ndcg_at_100
657
- value: 71.844
658
- - type: ndcg_at_1000
659
- value: 72.41499999999999
660
- - type: ndcg_at_3
661
- value: 64.781
662
- - type: ndcg_at_5
663
- value: 66.842
664
- - type: precision_at_1
665
- value: 57.199999999999996
666
- - type: precision_at_10
667
- value: 8.18
668
- - type: precision_at_100
669
- value: 0.951
670
- - type: precision_at_1000
671
- value: 0.1
672
- - type: precision_at_3
673
- value: 23.3
674
- - type: precision_at_5
675
- value: 14.979999999999999
676
- - type: recall_at_1
677
- value: 57.199999999999996
678
- - type: recall_at_10
679
- value: 81.8
680
- - type: recall_at_100
681
- value: 95.1
682
- - type: recall_at_1000
683
- value: 99.5
684
- - type: recall_at_3
685
- value: 69.89999999999999
686
- - type: recall_at_5
687
- value: 74.9
688
- - task:
689
- type: Classification
690
- dataset:
691
- type: C-MTEB/MultilingualSentiment-classification
692
- name: MTEB MultilingualSentiment
693
- config: default
694
- split: validation
695
- revision: None
696
- metrics:
697
- - type: accuracy
698
- value: 79.10000000000001
699
- - type: f1
700
- value: 78.84641270838914
701
- - task:
702
- type: PairClassification
703
- dataset:
704
- type: C-MTEB/OCNLI
705
- name: MTEB Ocnli
706
- config: default
707
- split: validation
708
- revision: None
709
- metrics:
710
- - type: cos_sim_accuracy
711
- value: 85.76069301570114
712
- - type: cos_sim_ap
713
- value: 91.2632425363724
714
- - type: cos_sim_f1
715
- value: 86.8038133467135
716
- - type: cos_sim_precision
717
- value: 82.69598470363289
718
- - type: cos_sim_recall
719
- value: 91.34107708553326
720
- - type: dot_accuracy
721
- value: 79.48023822414727
722
- - type: dot_ap
723
- value: 86.96279505479045
724
- - type: dot_f1
725
- value: 81.3658536585366
726
- - type: dot_precision
727
- value: 75.61196736174071
728
- - type: dot_recall
729
- value: 88.0675818373812
730
- - type: euclidean_accuracy
731
- value: 84.0281537628587
732
- - type: euclidean_ap
733
- value: 88.51741173181273
734
- - type: euclidean_f1
735
- value: 85.51791850760924
736
- - type: euclidean_precision
737
- value: 79.90825688073394
738
- - type: euclidean_recall
739
- value: 91.97465681098205
740
- - type: manhattan_accuracy
741
- value: 84.08229561451002
742
- - type: manhattan_ap
743
- value: 88.47110130415778
744
- - type: manhattan_f1
745
- value: 85.5886663409868
746
- - type: manhattan_precision
747
- value: 79.63636363636364
748
- - type: manhattan_recall
749
- value: 92.5026399155227
750
- - type: max_accuracy
751
- value: 85.76069301570114
752
- - type: max_ap
753
- value: 91.2632425363724
754
- - type: max_f1
755
- value: 86.8038133467135
756
- - task:
757
- type: Classification
758
- dataset:
759
- type: C-MTEB/OnlineShopping-classification
760
- name: MTEB OnlineShopping
761
- config: default
762
- split: test
763
- revision: None
764
- metrics:
765
- - type: accuracy
766
- value: 95.24999999999999
767
- - type: ap
768
- value: 93.62998298041074
769
- - type: f1
770
- value: 95.24017532648074
771
- - task:
772
- type: STS
773
- dataset:
774
- type: C-MTEB/PAWSX
775
- name: MTEB PAWSX
776
- config: default
777
- split: test
778
- revision: None
779
- metrics:
780
- - type: cos_sim_pearson
781
- value: 42.4435049928267
782
- - type: cos_sim_spearman
783
- value: 48.30517824065838
784
- - type: euclidean_pearson
785
- value: 47.06361699313179
786
- - type: euclidean_spearman
787
- value: 47.82186765650415
788
- - type: manhattan_pearson
789
- value: 47.07696683801967
790
- - type: manhattan_spearman
791
- value: 47.8382411727149
792
- - task:
793
- type: STS
794
- dataset:
795
- type: C-MTEB/QBQTC
796
- name: MTEB QBQTC
797
- config: default
798
- split: test
799
- revision: None
800
- metrics:
801
- - type: cos_sim_pearson
802
- value: 42.98576550573372
803
- - type: cos_sim_spearman
804
- value: 45.186068114717166
805
- - type: euclidean_pearson
806
- value: 34.35887865584346
807
- - type: euclidean_spearman
808
- value: 40.16452917420738
809
- - type: manhattan_pearson
810
- value: 34.32064302728564
811
- - type: manhattan_spearman
812
- value: 40.14426009784696
813
- - task:
814
- type: STS
815
- dataset:
816
- type: mteb/sts22-crosslingual-sts
817
- name: MTEB STS22 (zh)
818
- config: zh
819
- split: test
820
- revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
821
- metrics:
822
- - type: cos_sim_pearson
823
- value: 67.18376994296008
824
- - type: cos_sim_spearman
825
- value: 68.25525695381309
826
- - type: euclidean_pearson
827
- value: 65.10112612702181
828
- - type: euclidean_spearman
829
- value: 67.3953850420758
830
- - type: manhattan_pearson
831
- value: 64.96220731298227
832
- - type: manhattan_spearman
833
- value: 67.35995395052407
834
- - task:
835
- type: STS
836
- dataset:
837
- type: C-MTEB/STSB
838
- name: MTEB STSB
839
- config: default
840
- split: test
841
- revision: None
842
- metrics:
843
- - type: cos_sim_pearson
844
- value: 80.23573559451846
845
- - type: cos_sim_spearman
846
- value: 81.88824265805962
847
- - type: euclidean_pearson
848
- value: 80.25198665320175
849
- - type: euclidean_spearman
850
- value: 80.78767800619003
851
- - type: manhattan_pearson
852
- value: 80.25183889871069
853
- - type: manhattan_spearman
854
- value: 80.77487518316391
855
- - task:
856
- type: Reranking
857
- dataset:
858
- type: C-MTEB/T2Reranking
859
- name: MTEB T2Reranking
860
- config: default
861
- split: dev
862
- revision: None
863
- metrics:
864
- - type: map
865
- value: 69.0943636065547
866
- - type: mrr
867
- value: 79.81629026017988
868
- - task:
869
- type: Retrieval
870
- dataset:
871
- type: C-MTEB/T2Retrieval
872
- name: MTEB T2Retrieval
873
- config: default
874
- split: dev
875
- revision: None
876
- metrics:
877
- - type: map_at_1
878
- value: 27.338
879
- - type: map_at_10
880
- value: 76.943
881
- - type: map_at_100
882
- value: 80.632
883
- - type: map_at_1000
884
- value: 80.695
885
- - type: map_at_3
886
- value: 53.946000000000005
887
- - type: map_at_5
888
- value: 66.399
889
- - type: mrr_at_1
890
- value: 89.47
891
- - type: mrr_at_10
892
- value: 92.31200000000001
893
- - type: mrr_at_100
894
- value: 92.406
895
- - type: mrr_at_1000
896
- value: 92.40899999999999
897
- - type: mrr_at_3
898
- value: 91.89
899
- - type: mrr_at_5
900
- value: 92.167
901
- - type: ndcg_at_1
902
- value: 89.47
903
- - type: ndcg_at_10
904
- value: 84.629
905
- - type: ndcg_at_100
906
- value: 88.278
907
- - type: ndcg_at_1000
908
- value: 88.871
909
- - type: ndcg_at_3
910
- value: 85.80600000000001
911
- - type: ndcg_at_5
912
- value: 84.531
913
- - type: precision_at_1
914
- value: 89.47
915
- - type: precision_at_10
916
- value: 42.077999999999996
917
- - type: precision_at_100
918
- value: 5.023
919
- - type: precision_at_1000
920
- value: 0.516
921
- - type: precision_at_3
922
- value: 75.016
923
- - type: precision_at_5
924
- value: 62.980000000000004
925
- - type: recall_at_1
926
- value: 27.338
927
- - type: recall_at_10
928
- value: 83.889
929
- - type: recall_at_100
930
- value: 95.674
931
- - type: recall_at_1000
932
- value: 98.65
933
- - type: recall_at_3
934
- value: 55.85099999999999
935
- - type: recall_at_5
936
- value: 70.131
937
- - task:
938
- type: Classification
939
- dataset:
940
- type: C-MTEB/TNews-classification
941
- name: MTEB TNews
942
- config: default
943
- split: validation
944
- revision: None
945
- metrics:
946
- - type: accuracy
947
- value: 54.70900000000001
948
- - type: f1
949
- value: 52.74258250140307
950
- - task:
951
- type: Clustering
952
- dataset:
953
- type: C-MTEB/ThuNewsClusteringP2P
954
- name: MTEB ThuNewsClusteringP2P
955
- config: default
956
- split: test
957
- revision: None
958
- metrics:
959
- - type: v_measure
960
- value: 77.01405081546925
961
- - task:
962
- type: Clustering
963
- dataset:
964
- type: C-MTEB/ThuNewsClusteringS2S
965
- name: MTEB ThuNewsClusteringS2S
966
- config: default
967
- split: test
968
- revision: None
969
- metrics:
970
- - type: v_measure
971
- value: 71.50626450459885
972
- - task:
973
- type: Retrieval
974
- dataset:
975
- type: C-MTEB/VideoRetrieval
976
- name: MTEB VideoRetrieval
977
- config: default
978
- split: dev
979
- revision: None
980
- metrics:
981
- - type: map_at_1
982
- value: 64.1
983
- - type: map_at_10
984
- value: 75.047
985
- - type: map_at_100
986
- value: 75.347
987
- - type: map_at_1000
988
- value: 75.348
989
- - type: map_at_3
990
- value: 73.333
991
- - type: map_at_5
992
- value: 74.313
993
- - type: mrr_at_1
994
- value: 64.1
995
- - type: mrr_at_10
996
- value: 75.047
997
- - type: mrr_at_100
998
- value: 75.347
999
- - type: mrr_at_1000
1000
- value: 75.348
1001
- - type: mrr_at_3
1002
- value: 73.333
1003
- - type: mrr_at_5
1004
- value: 74.313
1005
- - type: ndcg_at_1
1006
- value: 64.1
1007
- - type: ndcg_at_10
1008
- value: 79.814
1009
- - type: ndcg_at_100
1010
- value: 81.071
1011
- - type: ndcg_at_1000
1012
- value: 81.085
1013
- - type: ndcg_at_3
1014
- value: 76.307
1015
- - type: ndcg_at_5
1016
- value: 78.054
1017
- - type: precision_at_1
1018
- value: 64.1
1019
- - type: precision_at_10
1020
- value: 9.45
1021
- - type: precision_at_100
1022
- value: 0.9990000000000001
1023
- - type: precision_at_1000
1024
- value: 0.1
1025
- - type: precision_at_3
1026
- value: 28.299999999999997
1027
- - type: precision_at_5
1028
- value: 17.82
1029
- - type: recall_at_1
1030
- value: 64.1
1031
- - type: recall_at_10
1032
- value: 94.5
1033
- - type: recall_at_100
1034
- value: 99.9
1035
- - type: recall_at_1000
1036
- value: 100.0
1037
- - type: recall_at_3
1038
- value: 84.89999999999999
1039
- - type: recall_at_5
1040
- value: 89.1
1041
- - task:
1042
- type: Classification
1043
- dataset:
1044
- type: C-MTEB/waimai-classification
1045
- name: MTEB Waimai
1046
- config: default
1047
- split: test
1048
- revision: None
1049
- metrics:
1050
- - type: accuracy
1051
- value: 89.61
1052
- - type: ap
1053
- value: 75.72595764105405
1054
- - type: f1
1055
- value: 88.23268907984898
1056
- license: cc-by-nc-4.0
1057
- ---
1058
-
1059
- # Conan-embedding-v1
1060
-
1061
- ## Performance
1062
-
1063
- | Model | **Average** | **CLS** | **Clustering** | **Reranking** | **Retrieval** | **STS** | **Pair_CLS** |
1064
- | :-------------------: | :---------: | :-------: | :------------: | :-----------: | :-----------: | :-------: | :----------: |
1065
- | gte-Qwen2-7B-instruct | 72.05 | 75.09 | 66.06 | 68.92 | 76.03 | 65.33 | 87.48 |
1066
- | xiaobu-embedding-v2 | 72.43 | 74.67 | 65.17 | 72.58 | 76.5 | 64.53 | 91.87 |
1067
- | **Conan-embedding-v1** | **72.61** | 74.97 | 64.69 | 72.88 | 76.77 | 64.75 | 92.06 |
1068
-
1069
- *More details will be available soon.*
1070
-
1071
- ---
1072
-
1073
- **About**
1074
-
1075
- Created by the Tencent BAC Group. All rights reserved.
1076
-
1077
- **License**
1078
-
1079
  This work is licensed under a [Creative Commons Attribution-NonCommercial 4.0 International License](https://creativecommons.org/licenses/by-nc/4.0/).
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: conan-embedding
6
+ results:
7
+ - task:
8
+ type: STS
9
+ dataset:
10
+ type: C-MTEB/AFQMC
11
+ name: MTEB AFQMC
12
+ config: default
13
+ split: validation
14
+ revision: None
15
+ metrics:
16
+ - type: cos_sim_pearson
17
+ value: 56.613572467148856
18
+ - type: cos_sim_spearman
19
+ value: 60.66446211824284
20
+ - type: euclidean_pearson
21
+ value: 58.42080485872613
22
+ - type: euclidean_spearman
23
+ value: 59.82750030458164
24
+ - type: manhattan_pearson
25
+ value: 58.39885271199772
26
+ - type: manhattan_spearman
27
+ value: 59.817749720366734
28
+ - task:
29
+ type: STS
30
+ dataset:
31
+ type: C-MTEB/ATEC
32
+ name: MTEB ATEC
33
+ config: default
34
+ split: test
35
+ revision: None
36
+ metrics:
37
+ - type: cos_sim_pearson
38
+ value: 56.60530380552331
39
+ - type: cos_sim_spearman
40
+ value: 58.63822441736707
41
+ - type: euclidean_pearson
42
+ value: 62.18551665180664
43
+ - type: euclidean_spearman
44
+ value: 58.23168804495912
45
+ - type: manhattan_pearson
46
+ value: 62.17191480770053
47
+ - type: manhattan_spearman
48
+ value: 58.22556219601401
49
+ - task:
50
+ type: Classification
51
+ dataset:
52
+ type: mteb/amazon_reviews_multi
53
+ name: MTEB AmazonReviewsClassification (zh)
54
+ config: zh
55
+ split: test
56
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
57
+ metrics:
58
+ - type: accuracy
59
+ value: 50.308
60
+ - type: f1
61
+ value: 46.927458607895126
62
+ - task:
63
+ type: STS
64
+ dataset:
65
+ type: C-MTEB/BQ
66
+ name: MTEB BQ
67
+ config: default
68
+ split: test
69
+ revision: None
70
+ metrics:
71
+ - type: cos_sim_pearson
72
+ value: 72.6472074172711
73
+ - type: cos_sim_spearman
74
+ value: 74.50748447236577
75
+ - type: euclidean_pearson
76
+ value: 72.51833296451854
77
+ - type: euclidean_spearman
78
+ value: 73.9898922606105
79
+ - type: manhattan_pearson
80
+ value: 72.50184948939338
81
+ - type: manhattan_spearman
82
+ value: 73.97797921509638
83
+ - task:
84
+ type: Clustering
85
+ dataset:
86
+ type: C-MTEB/CLSClusteringP2P
87
+ name: MTEB CLSClusteringP2P
88
+ config: default
89
+ split: test
90
+ revision: None
91
+ metrics:
92
+ - type: v_measure
93
+ value: 60.63545326048343
94
+ - task:
95
+ type: Clustering
96
+ dataset:
97
+ type: C-MTEB/CLSClusteringS2S
98
+ name: MTEB CLSClusteringS2S
99
+ config: default
100
+ split: test
101
+ revision: None
102
+ metrics:
103
+ - type: v_measure
104
+ value: 52.64834762325994
105
+ - task:
106
+ type: Reranking
107
+ dataset:
108
+ type: C-MTEB/CMedQAv1-reranking
109
+ name: MTEB CMedQAv1
110
+ config: default
111
+ split: test
112
+ revision: None
113
+ metrics:
114
+ - type: map
115
+ value: 91.38528814655234
116
+ - type: mrr
117
+ value: 93.35857142857144
118
+ - task:
119
+ type: Reranking
120
+ dataset:
121
+ type: C-MTEB/CMedQAv2-reranking
122
+ name: MTEB CMedQAv2
123
+ config: default
124
+ split: test
125
+ revision: None
126
+ metrics:
127
+ - type: map
128
+ value: 89.72084678877096
129
+ - type: mrr
130
+ value: 91.74380952380953
131
+ - task:
132
+ type: Retrieval
133
+ dataset:
134
+ type: C-MTEB/CmedqaRetrieval
135
+ name: MTEB CmedqaRetrieval
136
+ config: default
137
+ split: dev
138
+ revision: None
139
+ metrics:
140
+ - type: map_at_1
141
+ value: 26.987
142
+ - type: map_at_10
143
+ value: 40.675
144
+ - type: map_at_100
145
+ value: 42.495
146
+ - type: map_at_1000
147
+ value: 42.596000000000004
148
+ - type: map_at_3
149
+ value: 36.195
150
+ - type: map_at_5
151
+ value: 38.704
152
+ - type: mrr_at_1
153
+ value: 41.21
154
+ - type: mrr_at_10
155
+ value: 49.816
156
+ - type: mrr_at_100
157
+ value: 50.743
158
+ - type: mrr_at_1000
159
+ value: 50.77700000000001
160
+ - type: mrr_at_3
161
+ value: 47.312
162
+ - type: mrr_at_5
163
+ value: 48.699999999999996
164
+ - type: ndcg_at_1
165
+ value: 41.21
166
+ - type: ndcg_at_10
167
+ value: 47.606
168
+ - type: ndcg_at_100
169
+ value: 54.457
170
+ - type: ndcg_at_1000
171
+ value: 56.16100000000001
172
+ - type: ndcg_at_3
173
+ value: 42.108000000000004
174
+ - type: ndcg_at_5
175
+ value: 44.393
176
+ - type: precision_at_1
177
+ value: 41.21
178
+ - type: precision_at_10
179
+ value: 10.593
180
+ - type: precision_at_100
181
+ value: 1.609
182
+ - type: precision_at_1000
183
+ value: 0.183
184
+ - type: precision_at_3
185
+ value: 23.881
186
+ - type: precision_at_5
187
+ value: 17.339
188
+ - type: recall_at_1
189
+ value: 26.987
190
+ - type: recall_at_10
191
+ value: 58.875
192
+ - type: recall_at_100
193
+ value: 87.023
194
+ - type: recall_at_1000
195
+ value: 98.328
196
+ - type: recall_at_3
197
+ value: 42.265
198
+ - type: recall_at_5
199
+ value: 49.334
200
+ - task:
201
+ type: PairClassification
202
+ dataset:
203
+ type: C-MTEB/CMNLI
204
+ name: MTEB Cmnli
205
+ config: default
206
+ split: validation
207
+ revision: None
208
+ metrics:
209
+ - type: cos_sim_accuracy
210
+ value: 85.91701743836441
211
+ - type: cos_sim_ap
212
+ value: 92.53650618807644
213
+ - type: cos_sim_f1
214
+ value: 86.80265975431082
215
+ - type: cos_sim_precision
216
+ value: 83.79025239338556
217
+ - type: cos_sim_recall
218
+ value: 90.039747486556
219
+ - type: dot_accuracy
220
+ value: 77.17378232110643
221
+ - type: dot_ap
222
+ value: 85.40244368166546
223
+ - type: dot_f1
224
+ value: 79.03038001481951
225
+ - type: dot_precision
226
+ value: 72.20502901353966
227
+ - type: dot_recall
228
+ value: 87.2808043020809
229
+ - type: euclidean_accuracy
230
+ value: 84.65423932651834
231
+ - type: euclidean_ap
232
+ value: 91.47775530034588
233
+ - type: euclidean_f1
234
+ value: 85.64471499723298
235
+ - type: euclidean_precision
236
+ value: 81.31567885666246
237
+ - type: euclidean_recall
238
+ value: 90.46060322656068
239
+ - type: manhattan_accuracy
240
+ value: 84.58208057726999
241
+ - type: manhattan_ap
242
+ value: 91.46228709402014
243
+ - type: manhattan_f1
244
+ value: 85.6631626034444
245
+ - type: manhattan_precision
246
+ value: 82.10075026795283
247
+ - type: manhattan_recall
248
+ value: 89.5487491232172
249
+ - type: max_accuracy
250
+ value: 85.91701743836441
251
+ - type: max_ap
252
+ value: 92.53650618807644
253
+ - type: max_f1
254
+ value: 86.80265975431082
255
+ - task:
256
+ type: Retrieval
257
+ dataset:
258
+ type: C-MTEB/CovidRetrieval
259
+ name: MTEB CovidRetrieval
260
+ config: default
261
+ split: dev
262
+ revision: None
263
+ metrics:
264
+ - type: map_at_1
265
+ value: 83.693
266
+ - type: map_at_10
267
+ value: 90.098
268
+ - type: map_at_100
269
+ value: 90.145
270
+ - type: map_at_1000
271
+ value: 90.146
272
+ - type: map_at_3
273
+ value: 89.445
274
+ - type: map_at_5
275
+ value: 89.935
276
+ - type: mrr_at_1
277
+ value: 83.878
278
+ - type: mrr_at_10
279
+ value: 90.007
280
+ - type: mrr_at_100
281
+ value: 90.045
282
+ - type: mrr_at_1000
283
+ value: 90.046
284
+ - type: mrr_at_3
285
+ value: 89.34
286
+ - type: mrr_at_5
287
+ value: 89.835
288
+ - type: ndcg_at_1
289
+ value: 84.089
290
+ - type: ndcg_at_10
291
+ value: 92.351
292
+ - type: ndcg_at_100
293
+ value: 92.54599999999999
294
+ - type: ndcg_at_1000
295
+ value: 92.561
296
+ - type: ndcg_at_3
297
+ value: 91.15299999999999
298
+ - type: ndcg_at_5
299
+ value: 91.968
300
+ - type: precision_at_1
301
+ value: 84.089
302
+ - type: precision_at_10
303
+ value: 10.011000000000001
304
+ - type: precision_at_100
305
+ value: 1.009
306
+ - type: precision_at_1000
307
+ value: 0.101
308
+ - type: precision_at_3
309
+ value: 32.28
310
+ - type: precision_at_5
311
+ value: 19.789
312
+ - type: recall_at_1
313
+ value: 83.693
314
+ - type: recall_at_10
315
+ value: 99.05199999999999
316
+ - type: recall_at_100
317
+ value: 99.895
318
+ - type: recall_at_1000
319
+ value: 100.0
320
+ - type: recall_at_3
321
+ value: 95.917
322
+ - type: recall_at_5
323
+ value: 97.893
324
+ - task:
325
+ type: Retrieval
326
+ dataset:
327
+ type: C-MTEB/DuRetrieval
328
+ name: MTEB DuRetrieval
329
+ config: default
330
+ split: dev
331
+ revision: None
332
+ metrics:
333
+ - type: map_at_1
334
+ value: 26.924
335
+ - type: map_at_10
336
+ value: 81.392
337
+ - type: map_at_100
338
+ value: 84.209
339
+ - type: map_at_1000
340
+ value: 84.237
341
+ - type: map_at_3
342
+ value: 56.998000000000005
343
+ - type: map_at_5
344
+ value: 71.40100000000001
345
+ - type: mrr_at_1
346
+ value: 91.75
347
+ - type: mrr_at_10
348
+ value: 94.45
349
+ - type: mrr_at_100
350
+ value: 94.503
351
+ - type: mrr_at_1000
352
+ value: 94.505
353
+ - type: mrr_at_3
354
+ value: 94.258
355
+ - type: mrr_at_5
356
+ value: 94.381
357
+ - type: ndcg_at_1
358
+ value: 91.75
359
+ - type: ndcg_at_10
360
+ value: 88.53
361
+ - type: ndcg_at_100
362
+ value: 91.13900000000001
363
+ - type: ndcg_at_1000
364
+ value: 91.387
365
+ - type: ndcg_at_3
366
+ value: 87.925
367
+ - type: ndcg_at_5
368
+ value: 86.461
369
+ - type: precision_at_1
370
+ value: 91.75
371
+ - type: precision_at_10
372
+ value: 42.05
373
+ - type: precision_at_100
374
+ value: 4.827
375
+ - type: precision_at_1000
376
+ value: 0.48900000000000005
377
+ - type: precision_at_3
378
+ value: 78.55
379
+ - type: precision_at_5
380
+ value: 65.82000000000001
381
+ - type: recall_at_1
382
+ value: 26.924
383
+ - type: recall_at_10
384
+ value: 89.338
385
+ - type: recall_at_100
386
+ value: 97.856
387
+ - type: recall_at_1000
388
+ value: 99.11
389
+ - type: recall_at_3
390
+ value: 59.202999999999996
391
+ - type: recall_at_5
392
+ value: 75.642
393
+ - task:
394
+ type: Retrieval
395
+ dataset:
396
+ type: C-MTEB/EcomRetrieval
397
+ name: MTEB EcomRetrieval
398
+ config: default
399
+ split: dev
400
+ revision: None
401
+ metrics:
402
+ - type: map_at_1
403
+ value: 54.800000000000004
404
+ - type: map_at_10
405
+ value: 65.613
406
+ - type: map_at_100
407
+ value: 66.185
408
+ - type: map_at_1000
409
+ value: 66.191
410
+ - type: map_at_3
411
+ value: 62.8
412
+ - type: map_at_5
413
+ value: 64.535
414
+ - type: mrr_at_1
415
+ value: 54.800000000000004
416
+ - type: mrr_at_10
417
+ value: 65.613
418
+ - type: mrr_at_100
419
+ value: 66.185
420
+ - type: mrr_at_1000
421
+ value: 66.191
422
+ - type: mrr_at_3
423
+ value: 62.8
424
+ - type: mrr_at_5
425
+ value: 64.535
426
+ - type: ndcg_at_1
427
+ value: 54.800000000000004
428
+ - type: ndcg_at_10
429
+ value: 70.991
430
+ - type: ndcg_at_100
431
+ value: 73.434
432
+ - type: ndcg_at_1000
433
+ value: 73.587
434
+ - type: ndcg_at_3
435
+ value: 65.324
436
+ - type: ndcg_at_5
437
+ value: 68.431
438
+ - type: precision_at_1
439
+ value: 54.800000000000004
440
+ - type: precision_at_10
441
+ value: 8.790000000000001
442
+ - type: precision_at_100
443
+ value: 0.9860000000000001
444
+ - type: precision_at_1000
445
+ value: 0.1
446
+ - type: precision_at_3
447
+ value: 24.2
448
+ - type: precision_at_5
449
+ value: 16.02
450
+ - type: recall_at_1
451
+ value: 54.800000000000004
452
+ - type: recall_at_10
453
+ value: 87.9
454
+ - type: recall_at_100
455
+ value: 98.6
456
+ - type: recall_at_1000
457
+ value: 99.8
458
+ - type: recall_at_3
459
+ value: 72.6
460
+ - type: recall_at_5
461
+ value: 80.10000000000001
462
+ - task:
463
+ type: Classification
464
+ dataset:
465
+ type: C-MTEB/IFlyTek-classification
466
+ name: MTEB IFlyTek
467
+ config: default
468
+ split: validation
469
+ revision: None
470
+ metrics:
471
+ - type: accuracy
472
+ value: 51.94305502116199
473
+ - type: f1
474
+ value: 39.82197338426721
475
+ - task:
476
+ type: Classification
477
+ dataset:
478
+ type: C-MTEB/JDReview-classification
479
+ name: MTEB JDReview
480
+ config: default
481
+ split: test
482
+ revision: None
483
+ metrics:
484
+ - type: accuracy
485
+ value: 90.31894934333957
486
+ - type: ap
487
+ value: 63.89821836499594
488
+ - type: f1
489
+ value: 85.93687177603624
490
+ - task:
491
+ type: STS
492
+ dataset:
493
+ type: C-MTEB/LCQMC
494
+ name: MTEB LCQMC
495
+ config: default
496
+ split: test
497
+ revision: None
498
+ metrics:
499
+ - type: cos_sim_pearson
500
+ value: 73.18906216730208
501
+ - type: cos_sim_spearman
502
+ value: 79.44570226735877
503
+ - type: euclidean_pearson
504
+ value: 78.8105072242798
505
+ - type: euclidean_spearman
506
+ value: 79.15605680863212
507
+ - type: manhattan_pearson
508
+ value: 78.80576507484064
509
+ - type: manhattan_spearman
510
+ value: 79.14625534068364
511
+ - task:
512
+ type: Reranking
513
+ dataset:
514
+ type: C-MTEB/Mmarco-reranking
515
+ name: MTEB MMarcoReranking
516
+ config: default
517
+ split: dev
518
+ revision: None
519
+ metrics:
520
+ - type: map
521
+ value: 41.58107192600853
522
+ - type: mrr
523
+ value: 41.37063492063492
524
+ - task:
525
+ type: Retrieval
526
+ dataset:
527
+ type: C-MTEB/MMarcoRetrieval
528
+ name: MTEB MMarcoRetrieval
529
+ config: default
530
+ split: dev
531
+ revision: None
532
+ metrics:
533
+ - type: map_at_1
534
+ value: 68.33
535
+ - type: map_at_10
536
+ value: 78.261
537
+ - type: map_at_100
538
+ value: 78.522
539
+ - type: map_at_1000
540
+ value: 78.527
541
+ - type: map_at_3
542
+ value: 76.236
543
+ - type: map_at_5
544
+ value: 77.557
545
+ - type: mrr_at_1
546
+ value: 70.602
547
+ - type: mrr_at_10
548
+ value: 78.779
549
+ - type: mrr_at_100
550
+ value: 79.00500000000001
551
+ - type: mrr_at_1000
552
+ value: 79.01
553
+ - type: mrr_at_3
554
+ value: 77.037
555
+ - type: mrr_at_5
556
+ value: 78.157
557
+ - type: ndcg_at_1
558
+ value: 70.602
559
+ - type: ndcg_at_10
560
+ value: 82.254
561
+ - type: ndcg_at_100
562
+ value: 83.319
563
+ - type: ndcg_at_1000
564
+ value: 83.449
565
+ - type: ndcg_at_3
566
+ value: 78.46
567
+ - type: ndcg_at_5
568
+ value: 80.679
569
+ - type: precision_at_1
570
+ value: 70.602
571
+ - type: precision_at_10
572
+ value: 9.989
573
+ - type: precision_at_100
574
+ value: 1.05
575
+ - type: precision_at_1000
576
+ value: 0.106
577
+ - type: precision_at_3
578
+ value: 29.598999999999997
579
+ - type: precision_at_5
580
+ value: 18.948
581
+ - type: recall_at_1
582
+ value: 68.33
583
+ - type: recall_at_10
584
+ value: 94.00800000000001
585
+ - type: recall_at_100
586
+ value: 98.589
587
+ - type: recall_at_1000
588
+ value: 99.60799999999999
589
+ - type: recall_at_3
590
+ value: 84.057
591
+ - type: recall_at_5
592
+ value: 89.32900000000001
593
+ - task:
594
+ type: Classification
595
+ dataset:
596
+ type: mteb/amazon_massive_intent
597
+ name: MTEB MassiveIntentClassification (zh-CN)
598
+ config: zh-CN
599
+ split: test
600
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
601
+ metrics:
602
+ - type: accuracy
603
+ value: 78.13718897108272
604
+ - type: f1
605
+ value: 74.07613180855328
606
+ - task:
607
+ type: Classification
608
+ dataset:
609
+ type: mteb/amazon_massive_scenario
610
+ name: MTEB MassiveScenarioClassification (zh-CN)
611
+ config: zh-CN
612
+ split: test
613
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
614
+ metrics:
615
+ - type: accuracy
616
+ value: 86.20040349697376
617
+ - type: f1
618
+ value: 85.05282136519973
619
+ - task:
620
+ type: Retrieval
621
+ dataset:
622
+ type: C-MTEB/MedicalRetrieval
623
+ name: MTEB MedicalRetrieval
624
+ config: default
625
+ split: dev
626
+ revision: None
627
+ metrics:
628
+ - type: map_at_1
629
+ value: 56.8
630
+ - type: map_at_10
631
+ value: 64.199
632
+ - type: map_at_100
633
+ value: 64.89
634
+ - type: map_at_1000
635
+ value: 64.917
636
+ - type: map_at_3
637
+ value: 62.383
638
+ - type: map_at_5
639
+ value: 63.378
640
+ - type: mrr_at_1
641
+ value: 56.8
642
+ - type: mrr_at_10
643
+ value: 64.199
644
+ - type: mrr_at_100
645
+ value: 64.89
646
+ - type: mrr_at_1000
647
+ value: 64.917
648
+ - type: mrr_at_3
649
+ value: 62.383
650
+ - type: mrr_at_5
651
+ value: 63.378
652
+ - type: ndcg_at_1
653
+ value: 56.8
654
+ - type: ndcg_at_10
655
+ value: 67.944
656
+ - type: ndcg_at_100
657
+ value: 71.286
658
+ - type: ndcg_at_1000
659
+ value: 71.879
660
+ - type: ndcg_at_3
661
+ value: 64.163
662
+ - type: ndcg_at_5
663
+ value: 65.96600000000001
664
+ - type: precision_at_1
665
+ value: 56.8
666
+ - type: precision_at_10
667
+ value: 7.9799999999999995
668
+ - type: precision_at_100
669
+ value: 0.954
670
+ - type: precision_at_1000
671
+ value: 0.1
672
+ - type: precision_at_3
673
+ value: 23.1
674
+ - type: precision_at_5
675
+ value: 14.74
676
+ - type: recall_at_1
677
+ value: 56.8
678
+ - type: recall_at_10
679
+ value: 79.80000000000001
680
+ - type: recall_at_100
681
+ value: 95.39999999999999
682
+ - type: recall_at_1000
683
+ value: 99.8
684
+ - type: recall_at_3
685
+ value: 69.3
686
+ - type: recall_at_5
687
+ value: 73.7
688
+ - task:
689
+ type: Classification
690
+ dataset:
691
+ type: C-MTEB/MultilingualSentiment-classification
692
+ name: MTEB MultilingualSentiment
693
+ config: default
694
+ split: validation
695
+ revision: None
696
+ metrics:
697
+ - type: accuracy
698
+ value: 78.57666666666667
699
+ - type: f1
700
+ value: 78.23373528202681
701
+ - task:
702
+ type: PairClassification
703
+ dataset:
704
+ type: C-MTEB/OCNLI
705
+ name: MTEB Ocnli
706
+ config: default
707
+ split: validation
708
+ revision: None
709
+ metrics:
710
+ - type: cos_sim_accuracy
711
+ value: 85.43584190579317
712
+ - type: cos_sim_ap
713
+ value: 90.76665640338129
714
+ - type: cos_sim_f1
715
+ value: 86.5021770682148
716
+ - type: cos_sim_precision
717
+ value: 79.82142857142858
718
+ - type: cos_sim_recall
719
+ value: 94.40337909186906
720
+ - type: dot_accuracy
721
+ value: 78.66811044937737
722
+ - type: dot_ap
723
+ value: 85.84084363880804
724
+ - type: dot_f1
725
+ value: 80.10075566750629
726
+ - type: dot_precision
727
+ value: 76.58959537572254
728
+ - type: dot_recall
729
+ value: 83.9493136219641
730
+ - type: euclidean_accuracy
731
+ value: 84.46128857606931
732
+ - type: euclidean_ap
733
+ value: 88.62351100230491
734
+ - type: euclidean_f1
735
+ value: 85.7709469509172
736
+ - type: euclidean_precision
737
+ value: 80.8411214953271
738
+ - type: euclidean_recall
739
+ value: 91.34107708553326
740
+ - type: manhattan_accuracy
741
+ value: 84.51543042772063
742
+ - type: manhattan_ap
743
+ value: 88.53975607870393
744
+ - type: manhattan_f1
745
+ value: 85.75697211155378
746
+ - type: manhattan_precision
747
+ value: 81.14985862393968
748
+ - type: manhattan_recall
749
+ value: 90.91869060190075
750
+ - type: max_accuracy
751
+ value: 85.43584190579317
752
+ - type: max_ap
753
+ value: 90.76665640338129
754
+ - type: max_f1
755
+ value: 86.5021770682148
756
+ - task:
757
+ type: Classification
758
+ dataset:
759
+ type: C-MTEB/OnlineShopping-classification
760
+ name: MTEB OnlineShopping
761
+ config: default
762
+ split: test
763
+ revision: None
764
+ metrics:
765
+ - type: accuracy
766
+ value: 95.06999999999998
767
+ - type: ap
768
+ value: 93.45104559324996
769
+ - type: f1
770
+ value: 95.06036329426092
771
+ - task:
772
+ type: STS
773
+ dataset:
774
+ type: C-MTEB/PAWSX
775
+ name: MTEB PAWSX
776
+ config: default
777
+ split: test
778
+ revision: None
779
+ metrics:
780
+ - type: cos_sim_pearson
781
+ value: 40.01998290519605
782
+ - type: cos_sim_spearman
783
+ value: 46.5989769986853
784
+ - type: euclidean_pearson
785
+ value: 45.37905883182924
786
+ - type: euclidean_spearman
787
+ value: 46.22213849806378
788
+ - type: manhattan_pearson
789
+ value: 45.40925124776211
790
+ - type: manhattan_spearman
791
+ value: 46.250705124226386
792
+ - task:
793
+ type: STS
794
+ dataset:
795
+ type: C-MTEB/QBQTC
796
+ name: MTEB QBQTC
797
+ config: default
798
+ split: test
799
+ revision: None
800
+ metrics:
801
+ - type: cos_sim_pearson
802
+ value: 42.719516197112526
803
+ - type: cos_sim_spearman
804
+ value: 44.57507789581106
805
+ - type: euclidean_pearson
806
+ value: 35.73062264160721
807
+ - type: euclidean_spearman
808
+ value: 40.473523909913695
809
+ - type: manhattan_pearson
810
+ value: 35.69868964086357
811
+ - type: manhattan_spearman
812
+ value: 40.46349925372903
813
+ - task:
814
+ type: STS
815
+ dataset:
816
+ type: mteb/sts22-crosslingual-sts
817
+ name: MTEB STS22 (zh)
818
+ config: zh
819
+ split: test
820
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
821
+ metrics:
822
+ - type: cos_sim_pearson
823
+ value: 62.340118285801104
824
+ - type: cos_sim_spearman
825
+ value: 67.72781908620632
826
+ - type: euclidean_pearson
827
+ value: 63.161965746091596
828
+ - type: euclidean_spearman
829
+ value: 67.36825684340769
830
+ - type: manhattan_pearson
831
+ value: 63.089863788261425
832
+ - type: manhattan_spearman
833
+ value: 67.40868898995384
834
+ - task:
835
+ type: STS
836
+ dataset:
837
+ type: C-MTEB/STSB
838
+ name: MTEB STSB
839
+ config: default
840
+ split: test
841
+ revision: None
842
+ metrics:
843
+ - type: cos_sim_pearson
844
+ value: 79.1646360962365
845
+ - type: cos_sim_spearman
846
+ value: 81.24426700767087
847
+ - type: euclidean_pearson
848
+ value: 79.43826409936123
849
+ - type: euclidean_spearman
850
+ value: 79.71787965300125
851
+ - type: manhattan_pearson
852
+ value: 79.43377784961737
853
+ - type: manhattan_spearman
854
+ value: 79.69348376886967
855
+ - task:
856
+ type: Reranking
857
+ dataset:
858
+ type: C-MTEB/T2Reranking
859
+ name: MTEB T2Reranking
860
+ config: default
861
+ split: dev
862
+ revision: None
863
+ metrics:
864
+ - type: map
865
+ value: 68.35595092507496
866
+ - type: mrr
867
+ value: 79.00244892585788
868
+ - task:
869
+ type: Retrieval
870
+ dataset:
871
+ type: C-MTEB/T2Retrieval
872
+ name: MTEB T2Retrieval
873
+ config: default
874
+ split: dev
875
+ revision: None
876
+ metrics:
877
+ - type: map_at_1
878
+ value: 26.588
879
+ - type: map_at_10
880
+ value: 75.327
881
+ - type: map_at_100
882
+ value: 79.095
883
+ - type: map_at_1000
884
+ value: 79.163
885
+ - type: map_at_3
886
+ value: 52.637
887
+ - type: map_at_5
888
+ value: 64.802
889
+ - type: mrr_at_1
890
+ value: 88.103
891
+ - type: mrr_at_10
892
+ value: 91.29899999999999
893
+ - type: mrr_at_100
894
+ value: 91.408
895
+ - type: mrr_at_1000
896
+ value: 91.411
897
+ - type: mrr_at_3
898
+ value: 90.801
899
+ - type: mrr_at_5
900
+ value: 91.12700000000001
901
+ - type: ndcg_at_1
902
+ value: 88.103
903
+ - type: ndcg_at_10
904
+ value: 83.314
905
+ - type: ndcg_at_100
906
+ value: 87.201
907
+ - type: ndcg_at_1000
908
+ value: 87.83999999999999
909
+ - type: ndcg_at_3
910
+ value: 84.408
911
+ - type: ndcg_at_5
912
+ value: 83.078
913
+ - type: precision_at_1
914
+ value: 88.103
915
+ - type: precision_at_10
916
+ value: 41.638999999999996
917
+ - type: precision_at_100
918
+ value: 5.006
919
+ - type: precision_at_1000
920
+ value: 0.516
921
+ - type: precision_at_3
922
+ value: 73.942
923
+ - type: precision_at_5
924
+ value: 62.056
925
+ - type: recall_at_1
926
+ value: 26.588
927
+ - type: recall_at_10
928
+ value: 82.819
929
+ - type: recall_at_100
930
+ value: 95.334
931
+ - type: recall_at_1000
932
+ value: 98.51299999999999
933
+ - type: recall_at_3
934
+ value: 54.74
935
+ - type: recall_at_5
936
+ value: 68.864
937
+ - task:
938
+ type: Classification
939
+ dataset:
940
+ type: C-MTEB/TNews-classification
941
+ name: MTEB TNews
942
+ config: default
943
+ split: validation
944
+ revision: None
945
+ metrics:
946
+ - type: accuracy
947
+ value: 55.029
948
+ - type: f1
949
+ value: 53.043617905026764
950
+ - task:
951
+ type: Clustering
952
+ dataset:
953
+ type: C-MTEB/ThuNewsClusteringP2P
954
+ name: MTEB ThuNewsClusteringP2P
955
+ config: default
956
+ split: test
957
+ revision: None
958
+ metrics:
959
+ - type: v_measure
960
+ value: 77.83675116835911
961
+ - task:
962
+ type: Clustering
963
+ dataset:
964
+ type: C-MTEB/ThuNewsClusteringS2S
965
+ name: MTEB ThuNewsClusteringS2S
966
+ config: default
967
+ split: test
968
+ revision: None
969
+ metrics:
970
+ - type: v_measure
971
+ value: 74.19701455865277
972
+ - task:
973
+ type: Retrieval
974
+ dataset:
975
+ type: C-MTEB/VideoRetrieval
976
+ name: MTEB VideoRetrieval
977
+ config: default
978
+ split: dev
979
+ revision: None
980
+ metrics:
981
+ - type: map_at_1
982
+ value: 64.7
983
+ - type: map_at_10
984
+ value: 75.593
985
+ - type: map_at_100
986
+ value: 75.863
987
+ - type: map_at_1000
988
+ value: 75.863
989
+ - type: map_at_3
990
+ value: 73.63300000000001
991
+ - type: map_at_5
992
+ value: 74.923
993
+ - type: mrr_at_1
994
+ value: 64.7
995
+ - type: mrr_at_10
996
+ value: 75.593
997
+ - type: mrr_at_100
998
+ value: 75.863
999
+ - type: mrr_at_1000
1000
+ value: 75.863
1001
+ - type: mrr_at_3
1002
+ value: 73.63300000000001
1003
+ - type: mrr_at_5
1004
+ value: 74.923
1005
+ - type: ndcg_at_1
1006
+ value: 64.7
1007
+ - type: ndcg_at_10
1008
+ value: 80.399
1009
+ - type: ndcg_at_100
1010
+ value: 81.517
1011
+ - type: ndcg_at_1000
1012
+ value: 81.517
1013
+ - type: ndcg_at_3
1014
+ value: 76.504
1015
+ - type: ndcg_at_5
1016
+ value: 78.79899999999999
1017
+ - type: precision_at_1
1018
+ value: 64.7
1019
+ - type: precision_at_10
1020
+ value: 9.520000000000001
1021
+ - type: precision_at_100
1022
+ value: 1.0
1023
+ - type: precision_at_1000
1024
+ value: 0.1
1025
+ - type: precision_at_3
1026
+ value: 28.266999999999996
1027
+ - type: precision_at_5
1028
+ value: 18.060000000000002
1029
+ - type: recall_at_1
1030
+ value: 64.7
1031
+ - type: recall_at_10
1032
+ value: 95.19999999999999
1033
+ - type: recall_at_100
1034
+ value: 100.0
1035
+ - type: recall_at_1000
1036
+ value: 100.0
1037
+ - type: recall_at_3
1038
+ value: 84.8
1039
+ - type: recall_at_5
1040
+ value: 90.3
1041
+ - task:
1042
+ type: Classification
1043
+ dataset:
1044
+ type: C-MTEB/waimai-classification
1045
+ name: MTEB Waimai
1046
+ config: default
1047
+ split: test
1048
+ revision: None
1049
+ metrics:
1050
+ - type: accuracy
1051
+ value: 89.69999999999999
1052
+ - type: ap
1053
+ value: 75.91371640164184
1054
+ - type: f1
1055
+ value: 88.34067777698694
1056
+ license: cc-by-nc-4.0
1057
+ ---
1058
+
1059
+ # Conan-embedding-v1
1060
+
1061
+ ## Performance
1062
+
1063
+ | Model | **Average** | **CLS** | **Clustering** | **Reranking** | **Retrieval** | **STS** | **Pair_CLS** |
1064
+ | :-------------------: | :---------: | :-------: | :------------: | :-----------: | :-----------: | :-------: | :----------: |
1065
+ | gte-Qwen2-7B-instruct | 72.05 | 75.09 | 66.06 | 68.92 | 76.03 | 65.33 | 87.48 |
1066
+ | xiaobu-embedding-v2 | 72.43 | 74.67 | 65.17 | 72.58 | 76.5 | 64.53 | 91.87 |
1067
+ | **Conan-embedding-v1** | **72.62** | 75.03 | 66.33 | 72.76 | 76.67 | 64.18 | 91.66 |
1068
+
1069
+ *More details will be available soon.*
1070
+
1071
+ ---
1072
+
1073
+ **About**
1074
+
1075
+ Created by the Tencent BAC Group. All rights reserved.
1076
+
1077
+ **License**
1078
+
1079
  This work is licensed under a [Creative Commons Attribution-NonCommercial 4.0 International License](https://creativecommons.org/licenses/by-nc/4.0/).