File size: 1,736 Bytes
2e5e352
84abe20
2e5e352
84abe20
 
 
a409dda
 
 
 
 
84abe20
 
 
746c807
 
 
a409dda
2e5e352
84abe20
a409dda
84abe20
 
 
 
 
96011bc
13c90f7
84abe20
13c90f7
96011bc
 
75b9070
 
 
 
84abe20
 
 
 
 
 
96011bc
95cd091
84abe20
 
 
f7ed2b7
84abe20
96011bc
746c807
f7ed2b7
746c807
 
96011bc
 
 
 
 
 
 
 
 
746c807
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
library_name: PyLaia
license: mit
tags:
- PyLaia
- PyTorch
- atr
- htr
- ocr
- modern
- handwritten
metrics:
- CER
language:
- zh
datasets:
- Teklia/CASIA
pipeline_tag: image-to-text
---

# PyLaia - CASIA-HWDB2

This model performs Handwritten Text Recognition in Chinese.

## Model description

The model was trained using the PyLaia library on the [CASIA-HWDB2](http://www.nlpr.ia.ac.cn/databases/handwriting/Offline_database.html) dataset.

Training images were resized with a fixed height of 128 pixels, keeping the original aspect ratio.

| set | lines | 
| :----- | ------: | 
| train | 33,425  |
| val   |  8,325  |
| test  | 10,449  |

An external 6-gram character language model can be used to improve recognition. The language model is trained on the text from the CASIA-HWDB2 training set.

## Evaluation results

The model achieves the following results:

| set   | Language model | CER (%)    | lines   |
|:------|:---------------| ----------:|----------:|
| test  | no             | 4.61       | 10,449    |
| test  | yes            | 1.53       | 10,449    |

## How to use?

Please refer to the [PyLaia documentation](https://atr.pages.teklia.com/pylaia/usage/prediction/) to use this model.

## Cite us!

```bibtex
@inproceedings{pylaia2024,
    author = {Tarride, Solène and Schneider, Yoann and Generali-Lince, Marie and Boillet, Mélodie and Abadie, Bastien and Kermorvant, Christopher},
    title = {{Improving Automatic Text Recognition with Language Models in the PyLaia Open-Source Library}},
    booktitle = {Document Analysis and Recognition - ICDAR 2024},
    year = {2024},
    publisher = {Springer Nature Switzerland},
    address = {Cham},
    pages = {387--404},
    isbn = {978-3-031-70549-6}
}
```