Taki3d commited on
Commit
2a67aa7
1 Parent(s): 9fc0852

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: CrackDetectionLowRes
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9940476190476191
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # CrackDetectionLowRes
32
+
33
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Accuracy: 0.9940
36
+ - Loss: 0.0183
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 2e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 1337
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 5.0
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Accuracy | Validation Loss |
66
+ |:-------------:|:-----:|:----:|:--------:|:---------------:|
67
+ | 0.0126 | 1.0 | 992 | 0.9879 | 0.0344 |
68
+ | 0.0788 | 2.0 | 1904 | 0.9933 | 0.0220 |
69
+ | 0.1336 | 3.0 | 2856 | 0.9933 | 0.0222 |
70
+ | 0.0066 | 4.0 | 3808 | 0.9933 | 0.0190 |
71
+ | 0.0528 | 5.0 | 4760 | 0.9940 | 0.0183 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.31.0.dev0
77
+ - Pytorch 2.0.1+cpu
78
+ - Datasets 2.13.1
79
+ - Tokenizers 0.13.3