File size: 5,678 Bytes
f522073 16ba0f8 9566646 16ba0f8 f522073 4e71aae f522073 16ba0f8 0724ee4 1bb64fc f522073 16ba0f8 f522073 16ba0f8 f522073 16ba0f8 f522073 16ba0f8 f522073 16ba0f8 f522073 16ba0f8 f522073 16ba0f8 f522073 16ba0f8 a284709 16ba0f8 f522073 4a69c46 9206637 4a69c46 9566646 f522073 9566646 4a69c46 16ba0f8 f522073 16ba0f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
- cer
model-index:
- name: hubert-base-japanese-asr
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_11_0
type: common_voice
args: ja
metrics:
- name: Test WER
type: wer
value: 27.511982
- name: Test CER
type: cer
value: 11.699897
datasets:
- mozilla-foundation/common_voice_11_0
language:
- ja
---
# hubert-base-asr
This model is a fine-tuned version of [rinna/japanese-hubert-base](https://huggingface.co/rinna/japanese-hubert-base) on the [common_voice_11_0 dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/ja) for ASR tasks.
This model can only predict Hiragana.
## Acknowledgments
This model's fine-tuning approach was inspired by and references the training methodology used in [vumichien/wav2vec2-large-xlsr-japanese-hiragana](https://huggingface.co/vumichien/wav2vec2-large-xlsr-japanese-hiragana).
## Training Procedure
Fine-tuning on the common_voice_11_0 dataset led to the following results:
| Step | Training Loss | Validation Loss | WER |
|-------|---------------|-----------------|--------|
| 1000 | 2.505600 | 1.009531 | 0.614952|
| 2000 | 1.186900 | 0.752440 | 0.422948|
| 3000 | 0.947700 | 0.658266 | 0.358543|
| 4000 | 0.817700 | 0.656034 | 0.356308|
| 5000 | 0.741300 | 0.623420 | 0.314537|
| 6000 | 0.694700 | 0.624534 | 0.294018|
| 7000 | 0.653400 | 0.603341 | 0.286735|
| 8000 | 0.616200 | 0.606606 | 0.285132|
| 9000 | 0.594800 | 0.596215 | 0.277422|
| 10000 | 0.590500 | 0.603380 | 0.274949|
### Training hyperparameters
The training hyperparameters remained consistent throughout the fine-tuning process:
- learning_rate: 1e-4
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- num_train_epochs: 30
- lr_scheduler_type: linear
### How to evaluate the model
```python
from transformers import HubertForCTC, Wav2Vec2Processor
from datasets import load_dataset
import torch
import torchaudio
import librosa
import numpy as np
import re
import MeCab
import pykakasi
from evaluate import load
model = HubertForCTC.from_pretrained('TKU410410103/hubert-base-japanese-asr')
processor = Wav2Vec2Processor.from_pretrained("TKU410410103/hubert-base-japanese-asr")
# load dataset
test_dataset = load_dataset('mozilla-foundation/common_voice_11_0', 'ja', split='test')
remove_columns = [col for col in test_dataset.column_names if col not in ['audio', 'sentence']]
test_dataset = test_dataset.remove_columns(remove_columns)
# resample
def process_waveforms(batch):
speech_arrays = []
sampling_rates = []
for audio_path in batch['audio']:
speech_array, _ = torchaudio.load(audio_path['path'])
speech_array_resampled = librosa.resample(np.asarray(speech_array[0].numpy()), orig_sr=48000, target_sr=16000)
speech_arrays.append(speech_array_resampled)
sampling_rates.append(16000)
batch["array"] = speech_arrays
batch["sampling_rate"] = sampling_rates
return batch
# hiragana
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "'", "ʻ", "ˆ"]
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
wakati = MeCab.Tagger("-Owakati")
kakasi = pykakasi.kakasi()
kakasi.setMode("J","H")
kakasi.setMode("K","H")
kakasi.setMode("r","Hepburn")
conv = kakasi.getConverter()
def prepare_char(batch):
batch["sentence"] = conv.do(wakati.parse(batch["sentence"]).strip())
batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip()
return batch
resampled_eval_dataset = test_dataset.map(process_waveforms, batched=True, batch_size=50, num_proc=4)
eval_dataset = resampled_eval_dataset.map(prepare_char, num_proc=4)
# begin the evaluation process
wer = load("wer")
cer = load("cer")
def evaluate(batch):
inputs = processor(batch["array"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to(device), attention_mask=inputs.attention_mask.to(device)).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
columns_to_remove = [column for column in eval_dataset.column_names if column != "sentence"]
batch_size = 16
result = eval_dataset.map(evaluate, remove_columns=columns_to_remove, batched=True, batch_size=batch_size)
wer_result = wer.compute(predictions=result["pred_strings"], references=result["sentence"])
cer_result = cer.compute(predictions=result["pred_strings"], references=result["sentence"])
print("WER: {:2f}%".format(100 * wer_result))
print("CER: {:2f}%".format(100 * cer_result))
```
### Test results
The final model was evaluated as follows:
On common_voice_11_0:
- WER: 27.511982%
- CER: 11.699897%
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu118
- Datasets 2.17.1 |